These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 6550050)

  • 1. The neurological basis of sleep.
    Chuman MA
    Heart Lung; 1983 Mar; 12(2):177-82. PubMed ID: 6550050
    [No Abstract]   [Full Text] [Related]  

  • 2. [Electro-clinical correlations in sleep-wakefulness disorders].
    Kubicki S; Freund G
    Verh Dtsch Ges Inn Med; 1977 Apr 17-21; 83():877-88. PubMed ID: 206064
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of partial deprivation of slow-wave sleep on the structure of the sleep-wakefulness cycle].
    Oniani TN; Chidzhavadze EO; Maĭsuradze LM
    Fiziol Zh SSSR Im I M Sechenova; 1984 Aug; 70(8):1142-8. PubMed ID: 6500085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approaches to the study of the neurochemical basis of sleep and wakefulness.
    Drucker-Colín RR; Rojas-Ramírez JA
    Adv Psychobiol; 1976; 3():1-34. PubMed ID: 9792
    [No Abstract]   [Full Text] [Related]  

  • 6. [L-dopa therapy of narcolepsy. Observation of clinical course and polygraphic EEG night sleep and day leads].
    Kendel K; Rüther E; Beck U; Meier-Ewert K
    Nervenarzt; 1973 Aug; 44(8):434-6. PubMed ID: 4354849
    [No Abstract]   [Full Text] [Related]  

  • 7. [Physiopathology of hypersomnias].
    Passouant P; Cadilhac J; Baldy-Moulinier M
    Rev Neurol (Paris); 1967 Jun; 116(6):585-629. PubMed ID: 4310105
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential responses of brain stem neurons during spontaneous and stimulation-induced desynchronization of the cortical eeg in freely moving cats.
    Mallick BN; Thankachan S; Islam F
    Sleep Res Online; 1998; 1(4):132-46. PubMed ID: 11382870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic blockage of network- and intrinsically generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons.
    Steriade M
    Prog Brain Res; 1993; 98():345-55. PubMed ID: 8248523
    [No Abstract]   [Full Text] [Related]  

  • 10. [Clinico-electrophysiologic research on narcolepsy (an evolutionary-dissolution approach)].
    Iakhno NN; Veĭn AM; Karmanova IG; Razumov VM
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1988; 88(11):20-4. PubMed ID: 3223152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes in the sleep-waking cycle induced by brain-stem "split" in cats: anatomo-functional correlations].
    Mancia M; Rustioni A
    Boll Soc Ital Biol Sper; 1968 Nov; 44(21):1750-3. PubMed ID: 4308198
    [No Abstract]   [Full Text] [Related]  

  • 13. [Self-deprivation of paradoxical sleep in cats].
    Oniani TN; Maĭsuradze LM; Lortkipanidze ND; Oniani LT
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1988; 38(2):266-74. PubMed ID: 3400323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal coupling of rapid eye movements and cerebral activities during REM sleep.
    Ogawa K; Abe T; Nittono H; Yamazaki K; Hori T
    Clin Neurophysiol; 2009 Jan; 120(1):18-23. PubMed ID: 19062337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A putative flip-flop switch for control of REM sleep.
    Lu J; Sherman D; Devor M; Saper CB
    Nature; 2006 Jun; 441(7093):589-94. PubMed ID: 16688184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Modulation by the hypocretinergic/orexinergic neurotransmission system in sleep-wakefulness cycle states].
    del Cid-Pellitero E; Garzón M
    Rev Neurol; 2007 Oct 16-31; 45(8):482-90. PubMed ID: 17948215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Brainstem neural mechanisms of sleep and wakefulness].
    Kayama Y; Koyama Y
    Nihon Seirigaku Zasshi; 1993; 55(1):1-14. PubMed ID: 8463961
    [No Abstract]   [Full Text] [Related]  

  • 19. Long-latency auditory evoked responses during sleep deprivation and in narcolepsy.
    Pressman MR; Spielman AJ; Pollak CP; Weitzman ED
    Sleep; 1982; 5 Suppl 2():S147-56. PubMed ID: 7156649
    [No Abstract]   [Full Text] [Related]  

  • 20. Human parahippocampal activity: non-REM and REM elements in wake-sleep transition.
    Bódizs R; Sverteczki M; Lázár AS; Halász P
    Brain Res Bull; 2005 Mar; 65(2):169-76. PubMed ID: 15763184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.