These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6551228)

  • 1. Triplet anisotropy decay measurements of DNA internal motion.
    Hogan M; Wang J; Austin RH
    Ciba Found Symp; 1983; 93():226-45. PubMed ID: 6551228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular motion of DNA as measured by triplet anisotropy decay.
    Hogan M; Wang J; Austin RH; Monitto CL; Hershkowitz S
    Proc Natl Acad Sci U S A; 1982 Jun; 79(11):3518-22. PubMed ID: 6954497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA motions in the nucleosome core particle.
    Wang J; Hogan M; Austin RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5896-900. PubMed ID: 6964394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsecond rotational motions of eosin-labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence.
    Eads TM; Thomas DD; Austin RH
    J Mol Biol; 1984 Oct; 179(1):55-81. PubMed ID: 6209402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational diffusion of Escherichia coli RNA polymerase free and bound to deoxyribonucleic acid in nonspecific complexes.
    Austin RH; Karohl J; Jovin TM
    Biochemistry; 1983 Jun; 22(13):3082-90. PubMed ID: 6349679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic bending rigidity of a 200-bp DNA in 4 mM ionic strength: a transient polarization grating study.
    Naimushin AN; Fujimoto BS; Schurr JM
    Biophys J; 2000 Mar; 78(3):1498-518. PubMed ID: 10692335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation relaxation of DNA restriction fragments and the internal mobility of the double helix.
    Diekmann S; Hillen W; Morgeneyer B; Wells RD; Pörschke D
    Biophys Chem; 1982 Jul; 15(4):263-70. PubMed ID: 6288135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal motions in deoxyribonucleic acid II.
    Hogan ME; Jardetzky O
    Biochemistry; 1980 Jul; 19(15):3460-8. PubMed ID: 7190834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic overall and internal motions of short DNA fragments.
    Härd T; Kearns DR
    Nucleic Acids Res; 1986 May; 14(9):3945-56. PubMed ID: 3714500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon 13 spin-lattice relaxation, linewidth, and nuclear Overhauser enhancement measurements of nucleosome length DNA.
    Levy GC; Hilliard PR; Levy LF; Rill RL; Inners R
    J Biol Chem; 1981 Oct; 256(19):9986-9. PubMed ID: 7275990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-optical analysis of 'curved' DNA fragments.
    Diekmann S; Pörschke D
    Biophys Chem; 1987 May; 26(2-3):207-16. PubMed ID: 3607229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of DNA helix flexibility on base composition.
    Hogan M; LeGrange J; Austin B
    Nature; 1983 Aug 25-31; 304(5928):752-4. PubMed ID: 6888544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence anisotropy decay of ethidium bound to nucleosome core particles. 2. The torsional motion of the DNA is highly constrained and sensitive to pH.
    Winzeler EA; Small EW
    Biochemistry; 1991 May; 30(21):5304-13. PubMed ID: 2036397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence anisotropy decay due to rotational brownian motion of ethidium intercalated in double strand DNA.
    Genest D; Wahl P
    Biochim Biophys Acta; 1978 Dec; 521(2):502-9. PubMed ID: 570059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torsional motion and elasticity of the deoxyribonucleic acid double helix and its nucleosomal complexes.
    Hurley I; Osei-Gyimah P; Archer S; Scholes CP; Lerman LS
    Biochemistry; 1982 Sep; 21(20):4999-509. PubMed ID: 6291596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation of immunoglobulin M. 2. Nanosecond fluorescence depolarization analysis of segmental flexibility in anti-epsilon-l-dimethylamino-5-naphthalenesulfonyl-L-lysine anti-immunoglobulin from horse, pig, and shark.
    Holowka DA; Cathou RE
    Biochemistry; 1976 Jul; 15(15):3379-90. PubMed ID: 986160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ligands on the fluorescence polarisation anisotropy of ethidium bound to DNA.
    Collini M; Chirico G; Baldini G
    Biophys Chem; 1995 Feb; 53(3):227-39. PubMed ID: 7533547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of fast dynamics of nucleic acids by NMR.
    Lane AN
    Methods Enzymol; 1995; 261():413-35. PubMed ID: 8569505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial translational motions of base pairs in DNA molecules: application of the extended matrix generator method.
    Marky NL; Olson WK
    Biopolymers; 1994 Jan; 34(1):121-42. PubMed ID: 8110965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.