These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6553233)

  • 41. Transfer RNA chromatography on reversed phase five: effect of cadmium ion on a queuine-type tRNA.
    Jacobson KB; Lee EH
    Biochem Biophys Res Commun; 1984 Sep; 123(3):1027-32. PubMed ID: 6435622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The eukaryotic tRNA-guanine transglycosylase enzyme inserts queuine into tRNA via a sequential bi-bi mechanism.
    Alqasem MA; Fergus C; Southern JM; Connon SJ; Kelly VP
    Chem Commun (Camb); 2020 Apr; 56(27):3915-3918. PubMed ID: 32149287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Altered queuine modification of transfer RNA involved in the in vitro transformation of Chinese hamster embryo cells.
    Muralidhar G; Ochieng J; Trewyn RW
    Cancer Res; 1989 Dec; 49(24 Pt 1):7110-4. PubMed ID: 2582452
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus.
    Becker HD; Giegé R; Kern D
    Biochemistry; 1996 Jun; 35(23):7447-58. PubMed ID: 8652522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of tRNA tertiary structure and stability on aminoacylation by yeast aspartyl-tRNA synthetase.
    Puglisi JD; Pütz J; Florentz C; Giegé R
    Nucleic Acids Res; 1993 Jan; 21(1):41-9. PubMed ID: 8441619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The reliability of in vivo structure-function analysis of tRNA aminoacylation.
    McClain WH; Jou YY; Bhattacharya S; Gabriel K; Schneider J
    J Mol Biol; 1999 Jul; 290(2):391-409. PubMed ID: 10390340
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of queuosine modification system deficiencies in cultured human cells.
    Morris RC; Galicia MC; Clase KL; Elliott MS
    Mol Genet Metab; 1999 Sep; 68(1):56-67. PubMed ID: 10479483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Queuine salvage in mammalian cells. Evidence that queuine is generated from queuosine 5'-phosphate.
    Gündüz U; Katze JR
    J Biol Chem; 1984 Jan; 259(2):1110-3. PubMed ID: 6319378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of queuine uptake and incorporation into tRNA by protein kinase C and protein phosphatase.
    Morris RC; Brooks BJ; Hart KL; Elliott MS
    Biochim Biophys Acta; 1996 Apr; 1311(2):124-32. PubMed ID: 8630330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential turnover of tRNAs of the queuosine family in Dictyostelium discoideum and its possible role in regulation.
    Ott G; Kersten H
    Biol Chem Hoppe Seyler; 1985 Jan; 366(1):69-76. PubMed ID: 2408636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase.
    Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S
    J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase.
    Lee CP; Dyson MR; Mandal N; Varshney U; Bahramian B; RajBhandary UL
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9262-6. PubMed ID: 1409632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change.
    Feng L; Tumbula-Hansen D; Toogood H; Soll D
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity.
    Roy H; Becker HD; Mazauric MH; Kern D
    Nucleic Acids Res; 2007; 35(10):3420-30. PubMed ID: 17478519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantification of Queuosine Modification Levels in tRNA from Human Cells Using APB Gel and Northern Blot.
    Matuszek Z; Pan T
    Bio Protoc; 2019 Mar; 9(6):e3191. PubMed ID: 33654991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relaxation of a transfer RNA specificity by removal of modified nucleotides.
    Perret V; Garcia A; Grosjean H; Ebel JP; Florentz C; Giegé R
    Nature; 1990 Apr; 344(6268):787-9. PubMed ID: 2330033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and analysis of oncofetal tRNA and its possible application for cancer diagnosis and therapy.
    Nishimura S; Shindo-Okada N; Kasai H; Kuchino Y; Noguchi S; Iigo M; Hoshi A
    Recent Results Cancer Res; 1983; 84():401-12. PubMed ID: 6844700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of the CCA end of tRNA and its vicinity in aminoacylation.
    Tamura K; Hasegawa T
    Nucleic Acids Symp Ser; 1997; (37):133-4. PubMed ID: 9586035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A factor in serum and amniotic fluid is a substrate for the tRNA-modifying enzyme tRNA-guanine transferase.
    Katze JR; Farkas WR
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3271-5. PubMed ID: 291001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.