These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 655698)

  • 61. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity.
    Ooi N; Miller K; Hobbs J; Rhys-Williams W; Love W; Chopra I
    J Antimicrob Chemother; 2009 Oct; 64(4):735-40. PubMed ID: 19689976
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Antibacterial activity and mechanism of luteolin on Staphylococcus aureus].
    Wang Q; Xie M
    Wei Sheng Wu Xue Bao; 2010 Sep; 50(9):1180-4. PubMed ID: 21090258
    [TBL] [Abstract][Full Text] [Related]  

  • 63. C55 bacteriocin produced by ETB-plasmid positive Staphylococcus aureus strains is a key factor for competition with S. aureus strains.
    Kawada-Matsuo M; Shammi F; Oogai Y; Nakamura N; Sugai M; Komatsuzawa H
    Microbiol Immunol; 2016 Mar; 60(3):139-47. PubMed ID: 26801833
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Plasmid involvement in production of and immunity to the staphylococcin-like peptide Pep 5.
    Ersfeld-Dressen H; Sahl HG; Brandis H
    J Gen Microbiol; 1984 Nov; 130(11):3029-35. PubMed ID: 6527128
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The separation and isolation of plasma membranes and mesosomal vesicles from Staphylococcus aureus.
    Theodore TS; Popkin TJ; Cole RM
    Prep Biochem; 1971; 1(3):233-48. PubMed ID: 5162429
    [No Abstract]   [Full Text] [Related]  

  • 66. Purification and mode of action of two bacteriocins produced by Serratia marcesens HY.
    Eichenlaub R; Winkler U
    J Gen Microbiol; 1974 Jul; 83(0):83-94. PubMed ID: 4606968
    [No Abstract]   [Full Text] [Related]  

  • 67. Occurrence of staphylococcin production in staphylococci.
    Tzannetis S; Dimitracopoulos G; Papavassiliou J
    Boll Ist Sieroter Milan; 1974; 50(1):26-9. PubMed ID: 4273164
    [No Abstract]   [Full Text] [Related]  

  • 68. Formation of extracellular protein A by Staphylococcus aureus.
    Movitz J
    Eur J Biochem; 1976 Sep; 68(1):291-9. PubMed ID: 964266
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrastructural and biochemical alterations effected by viridin B, a bacterocin of alpha-hemolytic streptococci.
    Dajani AS; Law DJ; Bollinger RO; Ecklund PS
    Infect Immun; 1976 Sep; 14(3):776-82. PubMed ID: 965095
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bacteriocins of Clostridium perfringens. 2. Studies on mode of action.
    Mahony DE; Butler ME; Lewis RG
    Can J Microbiol; 1971 Nov; 17(11):1435-42. PubMed ID: 4110002
    [No Abstract]   [Full Text] [Related]  

  • 71. [Influence of ciprofloxacin on the ability of production of staphylococcin T in Staphylococcus cohnii (StT)].
    Białucha A; Wróblewska J; Kozuszko S; Gospodarek E; Deptuła A; Bugalski RM
    Med Dosw Mikrobiol; 2009; 61(2):119-23. PubMed ID: 19780489
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Clinical application of highly agglutinative staphylococcin in cancer treatment updates of the literature.
    Tian XL; Yan Z; Chen J; Zhao WH; Guo W
    Eur Rev Med Pharmacol Sci; 2016 Jun; 20(12):2718-25. PubMed ID: 27383328
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of morphological changes of Staphylococcus aureus and Escherichia coli induced with the antimicrobial peptide AN5-1.
    Alkotaini B; Anuar N; Kadhum AA
    Appl Biochem Biotechnol; 2015 Feb; 175(4):1868-78. PubMed ID: 25427593
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mode of action of pamamycin in Staphylococcus aureus.
    Chou WG; Pogell BM
    Antimicrob Agents Chemother; 1981 Oct; 20(4):443-54. PubMed ID: 6177281
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Starvation recovery of Staphylococcus aureus 8325-4.
    Clements MO; Foster SJ
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1755-1763. PubMed ID: 9695909
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermally induced ribonucleic acid degradation and leakage of substances from the metabolic pool in Staphylococcus aureus.
    Allwood MC; Russell AD
    J Bacteriol; 1968 Feb; 95(2):345-9. PubMed ID: 5640376
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Supramolecular structure in the membrane of Staphylococcus aureus.
    García-Lara J; Weihs F; Ma X; Walker L; Chaudhuri RR; Kasturiarachchi J; Crossley H; Golestanian R; Foster SJ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15725-30. PubMed ID: 26644587
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles.
    Doddema HJ; van der Drift C; Vogels GD; Veenhuis M
    J Bacteriol; 1979 Dec; 140(3):1081-9. PubMed ID: 160408
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biochemical and ultrastructural changes in Staphylococcus aureus treated with staphylococcin 1580.
    Weerkamp A; Heinen-von Borries UT; Vogels GD
    Antonie Van Leeuwenhoek; 1978; 44(1):35-48. PubMed ID: 655698
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Butyricin 7423: a bacteriocin produced by Clostridium butyricum NCIB7423.
    Clarke DJ; Morris JG
    J Gen Microbiol; 1976 Jul; 95(1):67-77. PubMed ID: 956780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.