These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 655707)

  • 21. An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis.
    Garcia-Ramon DC; Molina CA; Osuna A; Vílchez S
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3637-54. PubMed ID: 26782747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel method for biosynthesis of different polymorphs of TiO
    Jalali E; Maghsoudi S; Noroozian E
    Sci Rep; 2020 Jan; 10(1):426. PubMed ID: 31949264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of mosquito larvae by encapsulated pathogen Bacillus thuringiensis var. israelensis.
    Elçin YM
    J Microencapsul; 1995; 12(5):515-23. PubMed ID: 8544095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil.
    Maghsoudi S; Jalali E
    Sci Rep; 2017 Sep; 7(1):11019. PubMed ID: 28887475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Exoprotease synthesis, insecticidal activity and spore formation in a Bacillus thuringiensis mutant defective in glucose transport].
    Shevtsov VV; Kraĭnova OA; Voloshin AG; Kosareva NI
    Mikrobiologiia; 1982; 51(6):979-82. PubMed ID: 6759887
    [No Abstract]   [Full Text] [Related]  

  • 26. Photoprotection against inactivation of Bacillus thuringiensis spores by ultraviolet rays.
    Krieg A
    J Invertebr Pathol; 1975 Mar; 25(2):267-8. PubMed ID: 1117170
    [No Abstract]   [Full Text] [Related]  

  • 27. Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis.
    Porcar M; Navarro L; Jiménez-Peydró R
    J Invertebr Pathol; 2006 Sep; 93(1):63-6. PubMed ID: 16777139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoprotection by dipicolinate against inactivation of bacterial spores with ultraviolet light.
    Grecz N; Tang T; Frank HA
    J Bacteriol; 1973 Feb; 113(2):1058-60. PubMed ID: 4632312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of inactivation by sunlight on the larvicidal activities of mosquitocidal Bacillus thuringiensis H-14 isolates from Nigerian soils.
    Obeta JA
    J Commun Dis; 1996 Jun; 28(2):94-100. PubMed ID: 8810143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation.
    Xue Y; Nicholson WL
    Appl Environ Microbiol; 1996 Jul; 62(7):2221-7. PubMed ID: 8779559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of Bacillus thuringiensis for microbiological control of insects.
    Ali SA; Attia RM
    Zentralbl Bakteriol Naturwiss; 1978; 133(3):232-4. PubMed ID: 696044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Studies on the prolongation of mosquito larvicidal effect of Bacillus thuringiensis var israelensis].
    Xu QF
    Zhonghua Yu Fang Yi Xue Za Zhi; 1983 Nov; 17(6):333-5. PubMed ID: 6675981
    [No Abstract]   [Full Text] [Related]  

  • 33. Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method.
    Jalali E; Maghsoudi S; Noroozian E
    Sci Rep; 2020 Nov; 10(1):20633. PubMed ID: 33244110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation.
    Munakata N; Saito M; Hieda K
    Photochem Photobiol; 1991 Nov; 54(5):761-8. PubMed ID: 1798752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T7 bacteriophage.
    Spizizen J; Isherwood JE; Taylor GR
    Life Sci Space Res; 1975; 13():143-9. PubMed ID: 11913419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT; Lereclus D; Arantes OM
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. U.v.-induced and N-methyl-N'-nitro-N-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis.
    Auffray Y; Boutibonnes P
    Mutagenesis; 1987 Mar; 2(2):107-9. PubMed ID: 3331699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of pathogenicity of Bacillus thuringiensis by gamma rays.
    Khan KI; Jafri RH; Ahmed M
    Pol J Microbiol; 2004; 53(3):159-66. PubMed ID: 15702915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis.
    Chen Y; Deng Y; Wang J; Cai J; Ren G
    J Gen Appl Microbiol; 2004 Aug; 50(4):183-8. PubMed ID: 15754243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.
    Bishop AH
    J Appl Microbiol; 2014 Nov; 117(5):1274-82. PubMed ID: 25099131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.