BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 6558112)

  • 1. Incorporation of 3H-amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA-mediated, post-translational protein modification in squid giant axons.
    Ingoglia NA; Giuditta A; Zanakis MF; Babigian A; Tasaki I; Chakraborty G; Sturman JA
    J Neurosci; 1983 Dec; 3(12):2463-73. PubMed ID: 6558112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of transfer RNA in the axoplasm of the squid giant axon.
    Black MM; Lasek RJ
    J Neurobiol; 1977 May; 8(3):229-37. PubMed ID: 874479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that axonal tRNAs are resistant to RNase and ATPase and can be aminoacylated in the absence of exogenous ATP.
    Chakraborty G; Nicola A; Ingoglia NA
    J Neurochem; 1992 Jul; 59(1):273-81. PubMed ID: 1535373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid synthesis in the squid giant axon: incorporation of lipid precursors.
    Gould RM; Pant H; Gainer H; Tytell M
    J Neurochem; 1983 May; 40(5):1293-9. PubMed ID: 6834061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginylation in a Partially Purified Fraction of 150 k xg Supernatants of Axoplasm and Injured Vertebrate Nerves.
    Ingoglia NA
    Methods Mol Biol; 2023; 2620():27-34. PubMed ID: 37010745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational protein modification by amino acid addition in intact and regenerating axons of the rat sciatic nerve.
    Zanakis MF; Chakraborty G; Sturman JA; Ingoglia NA
    J Neurochem; 1984 Nov; 43(5):1286-94. PubMed ID: 6208329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational protein modification by amino acid addition in regenerating optic nerves of goldfish.
    Chakraborty G; Leach T; Zanakis MF; Ingoglia NA
    J Neurochem; 1986 Mar; 46(3):726-32. PubMed ID: 2419496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axoplasmic RNA species synthesized in the isolated squid giant axon.
    Rapallino MV; Cupello A; Giuditta A
    Neurochem Res; 1988 Jul; 13(7):625-31. PubMed ID: 2457819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.
    Gainer H; House S; Kim DS; Chin H; Pant HC
    Cell Mol Neurobiol; 2017 Apr; 37(3):475-486. PubMed ID: 27207029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on aminoacyl tRNA synthetases and transfer RNA in living Xenopus laevis oocytes.
    Gatica M; Solari A; Arancibia M; Allende JE
    Arch Biol Med Exp; 1979 Oct; 12(3):427-31. PubMed ID: 261727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and Use of tRNA for Enzymatic Post-translational Addition of Amino Acids to Proteins.
    Avcilar-Kucukgoze I; Gamper H; Hou YM; Kashina A
    STAR Protoc; 2020 Dec; 1(3):100207. PubMed ID: 33377101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl-tRNA synthetases catalyze AMP----ADP----ATP exchange reactions, indicating labile covalent enzyme-amino-acid intermediates.
    Rapaport E; Remy P; Kleinkauf H; Vater J; Zamecnik PC
    Proc Natl Acad Sci U S A; 1987 Nov; 84(22):7891-5. PubMed ID: 2960970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors for protein synthesis in the axoplasm of squid giant axons.
    Giuditta A; Metafora S; Felsani A; Del Rio A
    J Neurochem; 1977 Jun; 28(6):1393-5. PubMed ID: 874504
    [No Abstract]   [Full Text] [Related]  

  • 14. Arginylation in a Partially Purified Fraction of 150k × g Supernatants of Axoplasm and Injured Vertebrate Nerves.
    Ingoglia NA
    Methods Mol Biol; 2015; 1337():25-32. PubMed ID: 26285877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanism of functioning of aminoacyl-tRNA-synthetases].
    Malygin EG; Kiselev LL
    Mol Biol (Mosk); 1984; 18(5):1264-86. PubMed ID: 6390174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoacylation of undermethylated mammalian transfer RNA.
    Harris JS; Randerath K
    Biochim Biophys Acta; 1978 Dec; 521(2):566-75. PubMed ID: 83876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of amino acid turnover on transfer RNA from protein synthesis in HeLa cells.
    Aspen AJ; Hoagland MB
    Biochim Biophys Acta; 1978 May; 518(3):482-96. PubMed ID: 656429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of axoplasmic RNA in the squid giant fiber.
    Cutillo V; Montagnese P; Gremo F; Casola L; Giuditta A
    Neurochem Res; 1983 Dec; 8(12):1621-34. PubMed ID: 6200785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl-tRNA synthetase.
    Yamaguchi M; Oishi H; Suketa Y
    Biochem Pharmacol; 1988 Nov; 37(21):4075-80. PubMed ID: 2461201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.