BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 656069)

  • 1. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria.
    Scaduto RC
    Eur J Biochem; 1994 Aug; 223(3):751-8. PubMed ID: 7914488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of free malonate on the utilization of glutamate by rat brain mitochondria.
    Koeppen AH; Riley KM
    J Neurochem; 1987 May; 48(5):1509-15. PubMed ID: 2881982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cosubstrates on tricarboxylic acid cycle dynamics during pyruvate oxidation: the formation of alpha-ketoglutarate and utilization of glutamate by mitochondria from rabbit brain.
    Von Korff RW; Kerpel-Fronius S
    J Neurochem; 1975 Dec; 25(6):767-78. PubMed ID: 1236721
    [No Abstract]   [Full Text] [Related]  

  • 9. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF; Threlfall CJ
    Biochem J; 1968 Nov; 110(2):337-62. PubMed ID: 5726212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN.
    BALAZS R; HASLAM J
    Biochem J; 1965 Jan; 94(1):131-41. PubMed ID: 14342220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intersubstrate competitions and evidence for compartmentation in mitochondria.
    Harris EJ; Manger JR
    Biochem J; 1969 Jul; 113(4):617-28. PubMed ID: 4318275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle.
    Yudkoff M; Nelson D; Daikhin Y; Erecińska M
    J Biol Chem; 1994 Nov; 269(44):27414-20. PubMed ID: 7961653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of the alanine aminotransferase reaction in the formation of alpha-ketoglutarate in rat liver mitochondria.
    Lenartowicz E; Wojtczak AB
    Arch Biochem Biophys; 1988 Jan; 260(1):309-19. PubMed ID: 2893586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport.
    Patel TB; Clark JB
    Biochem J; 1979 Dec; 184(3):539-46. PubMed ID: 540047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pathway of glutamate metabolism in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1977 Dec; 168(3):521-7. PubMed ID: 606250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes.
    Cheeseman AJ; Clark JB
    J Neurochem; 1988 May; 50(5):1559-65. PubMed ID: 3361310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. METABOLISM OF PROPIONATE BY SHEEP LIVER. INTERRELATIONS OF PROPIONATE AND GLUTAMATE IN AGED MITOCHONDRIA.
    SMITH RM; OSBORNE-WHITE WS; RUSSELL GR
    Biochem J; 1965 May; 95(2):431-6. PubMed ID: 14340093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The redistribution of carbon label by the reactions involved in glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver.
    Heath DF
    Biochem J; 1968 Nov; 110(2):313-35. PubMed ID: 5726211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.