These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 656209)

  • 1. [Effects of bilateral amygdalectomy on levers pressing for food reward in the rabbit (author's transl)].
    Otabe K; Kwak R; Ohi T; Niizuma H; Okudaira Y; Sakamoto T; Suzuki J
    No To Shinkei; 1978 Mar; 30(3):317-26. PubMed ID: 656209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of bilateral mammillary bodies destruction on lever pressing for food reward in the rabbit (author's transl)].
    Ohi T; Niizuma H; Cook ND; Suzuki J; Kwak R; Sakamoto T
    No To Shinkei; 1981 Jan; 33(1):85-94. PubMed ID: 6781510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Electrical activity of the dorsal hippocampus during DRL learning in the rabbit (author's transl)].
    Niizuma H; Kwak R; Ohi T; Ohyama H; Suzuki J
    No To Shinkei; 1980 Aug; 32(8):795-801. PubMed ID: 7470325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement of mediating behavior on a spaced-responding schedule.
    SEGAL-RECHTSCHAFFEN E
    J Exp Anal Behav; 1963 Jan; 6(1):39-46. PubMed ID: 13987673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats.
    Pothuizen HH; Jongen-Rêlo AL; Feldon J; Yee BK
    Eur J Neurosci; 2005 Nov; 22(10):2605-16. PubMed ID: 16307603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of septal lesions on the hippocampal EEG and behavior during DRL learning in the rabbit].
    Ikeda S; Niizuma H; Ohyama H; Kwak R; Suzuki J
    No To Shinkei; 1987 Apr; 39(4):317-24. PubMed ID: 3593599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumental reactions and food and water intake in medial amygdala rats.
    Korczyński R; Fonberg E
    Acta Neurobiol Exp (Wars); 1976; 36(6):667-85. PubMed ID: 1024462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interaction between the basolateral amygdala and the nucleus accumbens underlies incentive motivation for food reward on a fixed ratio schedule.
    Simmons DA; Neill DB
    Neuroscience; 2009 Apr; 159(4):1264-73. PubMed ID: 19344638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual-visual associative learning and reward-association learning in monkeys: the role of the amygdala.
    Gaffan D; Gaffan EA; Harrison S
    J Neurosci; 1989 Feb; 9(2):558-64. PubMed ID: 2918377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timeout induced by differential-reinforcement-of-low-rate schedules.
    Lydersen T
    Behav Processes; 1992 Dec; 28(1-2):1-12. PubMed ID: 24924787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value.
    Winter S; Dieckmann M; Schwabe K
    Behav Brain Res; 2009 Mar; 198(1):206-13. PubMed ID: 19041903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral correlates of soman-induced neuropathology: deficits in DRL acquisition.
    McDonough JH; Smith RF; Smith CD
    Neurobehav Toxicol Teratol; 1986; 8(2):179-87. PubMed ID: 3713965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeated post trial administration of vasopressin impairs subsequent Differential Reinforcement of Low rates (DRL) performance.
    Alliot J; Alexinsky T
    Behav Processes; 1983 Oct; 8(4):345-62. PubMed ID: 24897680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
    Yin HH; Knowlton BJ; Balleine BW
    Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy.
    Schweimer J; Hauber W
    Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cyproheptadine on bar-pressing for food reward in rats.
    Radha Bai S; Rai UC; Thombre DP
    Indian J Physiol Pharmacol; 1982; 26(3):215-20. PubMed ID: 7174068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of changes in criterion value on differential reinforcement of low rate schedule performance.
    Pizzo MJ; Kirkpatrick K; Blundell PJ
    J Exp Anal Behav; 2009 Sep; 92(2):181-98. PubMed ID: 20354598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in DRH and DRL performance in rats developmentally exposed to an environmental PCB mixture.
    Sable HJ; Powers BE; Wang VC; Widholm JJ; Schantz SL
    Neurotoxicol Teratol; 2006; 28(5):548-56. PubMed ID: 16930942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor antagonism in the ventral tegmental area impairs acquisition of reward-related learning.
    Zellner MR; Kest K; Ranaldi R
    Behav Brain Res; 2009 Feb; 197(2):442-9. PubMed ID: 18983876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low-rate (DRL) operant schedule.
    O'Donnell JM; Marek GJ; Seiden LS
    Neurosci Biobehav Rev; 2005; 29(4-5):785-98. PubMed ID: 15893376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.