BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6562904)

  • 41. Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases.
    Yang J; Barniol-Xicota M; Nguyen MTN; Ticha A; Strisovsky K; Verhelst SHL
    Bioorg Med Chem Lett; 2018 May; 28(8):1423-1427. PubMed ID: 29506958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chloroketone hydrolysis by chymotrypsin and N-methylhistidyl-57-chymotrypsin: implications for the mechanism of chymotrypsin inactivation by chloroketones.
    Prorok M; Albeck A; Foxman BM; Abeles RH
    Biochemistry; 1994 Aug; 33(32):9784-90. PubMed ID: 8068658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Halo enol lactone inhibitors of chymotrypsin: burst kinetics and enantioselectivity of inactivation.
    Baek DJ; Katzenellenbogen JA
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1335-42. PubMed ID: 1872851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of peptide fragments related to eglin c and examination of their inhibitory effect on human leukocyte elastase, cathepsin G and alpha-chymotrypsin.
    Okada Y; Tsuboi S; Tsuda Y; Nakabayashi K; Nagamatsu Y; Yamamoto J
    Biochem Biophys Res Commun; 1989 May; 161(1):272-5. PubMed ID: 2730658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro interaction of porcine serum and colostrum protease inhibitors with pancreatic trypsin, chymotrypsin and elastase.
    Ohlsson BG; Weström BR; Karlsson BW
    Biochim Biophys Acta; 1982 Aug; 705(3):357-65. PubMed ID: 6181813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reaction of lentil trypsin-chymotrypsin inhibitors with human and bovine proteinases.
    Weder JK; Kahleyss R
    J Agric Food Chem; 2003 Dec; 51(27):8045-50. PubMed ID: 14690394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Halo enol lactones: studies on the mechanism of inactivation of alpha-chymotrypsin.
    Daniels SB; Katzenellenbogen JA
    Biochemistry; 1986 Mar; 25(6):1436-44. PubMed ID: 3964685
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of active site-directed organometallic irreversible protease inhibitors.
    Wyrick S; Kim YJ; Ishaq K; Chae CB
    Biochim Biophys Acta; 1979 May; 568(1):11-8. PubMed ID: 444536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics of the interaction of chymotrypsin with eglin c.
    Faller B; Bieth JG
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):27-32. PubMed ID: 1741752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inactivation of alpha-chymotrypsin by a bifunctional reagent, 2-bromomethyl-3, I-benzoxazin-4-one.
    Alazard R; Béchet JJ; Dupaix A; Yon J
    Biochim Biophys Acta; 1973 Jun; 309(2):379-96. PubMed ID: 4731968
    [No Abstract]   [Full Text] [Related]  

  • 51. The primary elastase inhibitor (elastasin) and trypsin inhibitor (contrapsin) in the goat are serpins related to human alpha 1-anti-chymotrypsin.
    Potempa J; Enghild JJ; Travis J
    Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):191-7. PubMed ID: 7864809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective and reversible inhibition of trypsin and alpha-chymotrypsin by phosphonate esters.
    Zhao Q; Kovach IM; Bencsura A; Papathanassiu A
    Biochemistry; 1994 Jul; 33(26):8128-38. PubMed ID: 8025118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potent inactivator of alpha-chymotrypsin: 2,2-dimethyl-3-(N-4-cyanobenzoyl)amino-5-phenyl pentanoic anhydride.
    Ito K; Igarashi K; Muramatsu M; Harada T; Hayashi Y; Katada J; Uno I
    Biochem Biophys Res Commun; 1997 Nov; 240(3):850-5. PubMed ID: 9398657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reaction of serine proteases with substituted isocoumarins: discovery of 3,4-dichloroisocoumarin, a new general mechanism based serine protease inhibitor.
    Harper JW; Hemmi K; Powers JC
    Biochemistry; 1985 Apr; 24(8):1831-41. PubMed ID: 3893537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. P-Nitrophenyl carbamates as active-site-specific reagents for serine proteases.
    Scofield RE; Werner RP; Wold F
    Biochemistry; 1977 May; 16(11):2492-6. PubMed ID: 861216
    [No Abstract]   [Full Text] [Related]  

  • 56. [Flavonoids extracted from Ribes nigrum L. and Alchemilla vulgaris L.: 1. In vitro inhibitory activities on elastase, trypsin and chymotrypsin. 2. Angioprotective activities compared in vivo].
    Jonadet M; Meunier MT; Villie F; Bastide JP; Lamaison JL
    J Pharmacol; 1986; 17(1):21-7. PubMed ID: 3635653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The synthesis, kinetic characterization and application of biotinylated aminoacylchloromethanes for the detection of chymotrypsin and trypsin-like serine proteinases.
    Kay G; Bailie JR; Halliday IM; Nelson J; Walker B
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):455-9. PubMed ID: 1575691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Introduction of non-natural amino acid residues into the substrate-specific P1 position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors.
    Łegowska A; Debowski D; Lesner A; Wysocka M; Rolka K
    Bioorg Med Chem; 2009 May; 17(9):3302-7. PubMed ID: 19362846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selection of potent chymotrypsin and elastase inhibitors from M13 phage library of basic pancreatic trypsin inhibitor (BPTI).
    Kiczak L; Kasztura M; Koscielska-Kasprzak K; Dadlez M; Otlewski J
    Biochim Biophys Acta; 2001 Dec; 1550(2):153-63. PubMed ID: 11755204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pancreatic proteolytic enzymes of ostrich purified on immobilized protein inhibitors. Characterization of a new form of chymotrypsin (Chtr1).
    Zelazko M; Chrzanowska J; Polanowski A
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Sep; 151(1):102-9. PubMed ID: 18598777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.