These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 656408)
1. Requirement of the light-harvesting pigment.protein complex for magnesium ion regulation of excitation energy distribution in chloroplasts. Lieberman JR; Bose S; Arntzen CJ Biochim Biophys Acta; 1978 Jun; 502(3):417-29. PubMed ID: 656408 [TBL] [Abstract][Full Text] [Related]
2. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. Armond PA; Staehelin LA; Arntzen CJ J Cell Biol; 1977 May; 73(2):400-18. PubMed ID: 870501 [TBL] [Abstract][Full Text] [Related]
3. Picosecond time-resolved fluorescence study of chlorophyll organisation and excitation energy distribution in chloroplasts from wild-type barley and a mutant lacking chlorophyll b. Searle GF; Tredwell CJ; Barber J; Porter G Biochim Biophys Acta; 1979 Mar; 545(3):496-507. PubMed ID: 427141 [TBL] [Abstract][Full Text] [Related]
4. Effects of cations upon chloroplast membrane subunit. Interactions and excitation energy distribution. Arntzen CJ; Ditto CL Biochim Biophys Acta; 1976 Nov; 449(2):259-74. PubMed ID: 990294 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular structure of chlorophyll-protein complexes in relation to the chlorophyll a fluorescence of chloroplasts at room or liquid nitrogen temperature. Argyroudi AJ; Akoyunoglou G Arch Biochem Biophys; 1983 Dec; 227(2):469-77. PubMed ID: 6667028 [TBL] [Abstract][Full Text] [Related]
6. Correlation between the "low"-salt-induced increase in the F730/F685 fluorescence emission ratio at 77 K in isolated chloroplasts, and the organization of chlorophyll in photosystem I pigment-protein complexes of thylakoids. Argyroudi-Akoyunoglou J Arch Biochem Biophys; 1991 May; 286(2):524-32. PubMed ID: 1897975 [TBL] [Abstract][Full Text] [Related]
7. Investigations of the role of the main light-harvesting chlorophyll-protein complex in thylakoid membranes. Reconstitution of depleted membranes from intermittent-light-grown plants with the isolated complex. Day DA; Ryrie IJ; Fuad N J Cell Biol; 1984 Jan; 98(1):163-72. PubMed ID: 6707083 [TBL] [Abstract][Full Text] [Related]
8. Regulation of excitation energy distribution in photosystem-II fragments by magnesium ions. Yamamoto Y; Ke B Biochim Biophys Acta; 1980 Sep; 592(2):296-302. PubMed ID: 7407094 [TBL] [Abstract][Full Text] [Related]
9. Effects of sodium and magnesium cations on the "dark-" and light-induced chlorophyll a fluorescence yields in sucrose-washed spinach chloroplasts. Wydrzynski T; Gross EL; Govindjee Biochim Biophys Acta; 1975 Jan; 376(1):151-61. PubMed ID: 1125217 [TBL] [Abstract][Full Text] [Related]
10. Organization of the photosynthetic apparatus of the chlorina-f2 mutant of barley using chlorophyll fluorescence decay kinetics. Karukstis KK; Sauer K Biochim Biophys Acta; 1984 Jul; 766(1):148-55. PubMed ID: 6743648 [TBL] [Abstract][Full Text] [Related]
11. A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Briantais JM; Vernotte C; Picaud M; Krause GH Biochim Biophys Acta; 1979 Oct; 548(1):128-38. PubMed ID: 486438 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Burke JJ; Ditto CL; Arntzen CJ Arch Biochem Biophys; 1978 Apr; 187(1):252-63. PubMed ID: 655723 [No Abstract] [Full Text] [Related]
13. Transient inactivation of the thylakoid photosystem II light-harvesting protein kinase system and concomitant changes in intramembrane particle size during photoinhibition of Chlamydomonas reinhardtii. Schuster G; Dewit M; Staehelin LA; Ohad I J Cell Biol; 1986 Jul; 103(1):71-80. PubMed ID: 3522607 [TBL] [Abstract][Full Text] [Related]
14. Interactions between photosystem II components in chloroplast membranes. A correlation between the existence of a low potential species of cytochrome b-559 and low chlorophyll fluorescence in inhibited and developing chloroplasts. Horton P; Croze E; Smutzer G Biochim Biophys Acta; 1978 Aug; 503(2):274-86. PubMed ID: 687609 [TBL] [Abstract][Full Text] [Related]
15. Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Schreiber U; Armond PA Biochim Biophys Acta; 1978 Apr; 502(1):138-51. PubMed ID: 638138 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence emission spectra of chloroplasts and subchloroplast preparations at low temperature. Rijgersberg CP; Amesz J; Thielen AP; Swager JA Biochim Biophys Acta; 1979 Mar; 545(3):473-82. PubMed ID: 427140 [TBL] [Abstract][Full Text] [Related]
17. The effect of mono- and divalent cations on the quantum yields for electron transport in chloroplasts. Gross EL; Zimmermann RJ; Hormats GF Biochim Biophys Acta; 1976 Jul; 440(1):59-67. PubMed ID: 947365 [TBL] [Abstract][Full Text] [Related]
18. Light-dependent quenching of chlorophyll fluorescence in pea chloroplasts induced by adenosine 5'-triphosphate. Horton P; Black MT Biochim Biophys Acta; 1981 Mar; 635(1):53-62. PubMed ID: 7213677 [TBL] [Abstract][Full Text] [Related]
19. Simulation of grana stacking in a model membrane system. Mediation by a purified light-harvesting pigment-protein complex from chloroplasts. Mullet JE; Arntzen CJ Biochim Biophys Acta; 1980 Jan; 589(1):100-17. PubMed ID: 7356975 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. Stroch M; Cajánek M; Kalina J; Spunda V J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]