These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 656914)

  • 21. Acoustic-distortion products: separation of sensory from neural dysfunction in sensorineural hearing loss in human beings and rabbits.
    Ohlms LA; Lonsbury-Martin BL; Martin GK
    Otolaryngol Head Neck Surg; 1991 Feb; 104(2):159-74. PubMed ID: 1901144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia.
    Patuzzi R; Yates GK
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific Influences of Early Acoustic Environments on Cochlear Hair Cells in Postnatal Mice.
    Chang A; Chen P; Guo S; Xu N; Pan W; Zhang H; Li C; Tang J
    Neural Plast; 2018; 2018():5616930. PubMed ID: 29849558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus.
    Sisneros JA
    J Neurophysiol; 2009 Aug; 102(2):1121-31. PubMed ID: 19553489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones.
    Kim DO; Molnar CE
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):16-30. PubMed ID: 430109
    [No Abstract]   [Full Text] [Related]  

  • 26. Psychobiology of newborn auditory preferences.
    Fifer WP; Moon C
    Semin Perinatol; 1989 Oct; 13(5):430-3. PubMed ID: 2814529
    [No Abstract]   [Full Text] [Related]  

  • 27. Tuning properties of cochlear hair cells.
    Russell IJ; Sellick PM
    Nature; 1977 Jun; 267(5614):858-60. PubMed ID: 895845
    [No Abstract]   [Full Text] [Related]  

  • 28. Long lasting attenuation by prior sounds in auditory cortex of awake primates.
    Werner-Reiss U; Porter KK; Underhill AM; Groh JM
    Exp Brain Res; 2006 Jan; 168(1-2):272-6. PubMed ID: 16328295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efferent control of cochlear inner hair cell responses in the guinea-pig.
    Brown MC; Nuttall AL
    J Physiol; 1984 Sep; 354():625-46. PubMed ID: 6481647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tinnitus suppression with threshold and subthreshold sound stimuli.
    Franz B; Offutt G
    Int Tinnitus J; 2003; 9(1):11-6. PubMed ID: 14763323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Conversion of sound into auditory nerve action potentials].
    Encke J; Kreh J; Völk F; Hemmert W
    HNO; 2016 Nov; 64(11):808-814. PubMed ID: 27785535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex.
    Noreña AJ; Gourévitch B; Aizawa N; Eggermont JJ
    Nat Neurosci; 2006 Jul; 9(7):932-9. PubMed ID: 16783369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The discrimination of frequency-modulated signals under free behavior conditions in cats].
    Kalmykova IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(3):451-5. PubMed ID: 2169150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The evaluation of human perception of the rate and acceleration in the approach and withdrawal of a sound source].
    Vartanian IA; Andreeva IG; Mazing AIu; Markovich AM
    Fiziol Cheloveka; 1999; 25(6):38-47. PubMed ID: 10641382
    [No Abstract]   [Full Text] [Related]  

  • 35. Peripheral auditory processing and investigations of the "precedence effect" which utilize successive transient stimuli.
    Hartung K; Trahiotis C
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1505-13. PubMed ID: 11572361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Processing of acoustic stimuli in the inner ear--a review of recent research results].
    Klinke R
    HNO; 1987 Apr; 35(4):139-48. PubMed ID: 2438259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic sensitivity analysis of the noise-induced excitability in a model of a hair bundle.
    Bashkirtseva I; Neiman AB; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052711. PubMed ID: 23767570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A method for recording auditory evoked potentials from the frequency modulation of band noises].
    Karaichev KI; Samoĭlovich LA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(2):382-7. PubMed ID: 2750303
    [No Abstract]   [Full Text] [Related]  

  • 39. Differential fetal auditory reactiveness as a function of stimulus characteristics and state.
    Lecanuet JP; Granier-Deferre C; Busnel MC
    Semin Perinatol; 1989 Oct; 13(5):421-9. PubMed ID: 2814528
    [No Abstract]   [Full Text] [Related]  

  • 40. [Frequency selectivity of the normal guinea pig cochlea and in experimental hearing loss].
    Tavartkiladze GA; Kharrison RV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Apr; 71(4):461-5. PubMed ID: 3996676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.