These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6572969)

  • 21. Preparation of ribonuclease S domain-swapped dimers conjugated with DNA and PNA: modulating the activity of ribonucleases.
    Pulido D; López-Alonso JP; Marchán V; González C; Grandas A; Laurents DV
    Bioconjug Chem; 2008 Jan; 19(1):263-70. PubMed ID: 18163547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the termini of RNase Hs from Chlamydophila pneumoniae on enzymatic biochemical characterization.
    Hou J; Lu Z; Guo X; Liu J
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):831-7. PubMed ID: 22908176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of intracellular protein degradation in IMR-90 human diploid fibroblasts.
    Auteri JS; Okada A; Bochaki V; Dice JF
    J Cell Physiol; 1983 May; 115(2):167-74. PubMed ID: 6341382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polypeptide import and degradation by isolated lysosomes.
    Terlecky SR; Dice JF
    J Biol Chem; 1993 Nov; 268(31):23490-5. PubMed ID: 8226876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases.
    Smith MR; Newton DL; Mikulski SM; Rybak SM
    Exp Cell Res; 1999 Feb; 247(1):220-32. PubMed ID: 10047464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity.
    Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ
    J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of intracellular protein catabolism. Intracellular fate of microinjected polypeptides translated in vitro.
    Gaskell MJ; Heinrich PC; Mayer RJ
    Biochem J; 1987 Feb; 241(3):817-25. PubMed ID: 3593224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribonuclease S-peptide. A model for molecular recognition.
    Levit S; Berger A
    J Biol Chem; 1976 Mar; 251(5):1333-9. PubMed ID: 1254570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary structure of a base non-specific and adenylic acid preferential ribonuclease from the fruit bodies of Lentinus edodes.
    Kobayashi H; Inokuchi N; Koyama T; Watanabe H; Iwama M; Ohgi K; Irie M
    Biosci Biotechnol Biochem; 1992 Dec; 56(12):2003-10. PubMed ID: 1369096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer.
    Lee JE; Raines RT
    Biochemistry; 2005 Dec; 44(48):15760-7. PubMed ID: 16313179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primary structure of porcine spleen ribonuclease: sequence homology.
    Kusano A; Iwama M; Sanda A; Suwa K; Nakaizumi E; Nakatani Y; Ohkawa H; Ohgi K; Irie M
    Acta Biochim Pol; 1997; 44(4):689-99. PubMed ID: 9584849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach.
    Ercole C; Colamarino RA; Pizzo E; Fogolari F; Spadaccini R; Picone D
    Biopolymers; 2009 Dec; 91(12):1009-17. PubMed ID: 19263489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of l-Tellurienylalanine as a Phenylalanine Isostere.
    Vurgun N; Nitz M
    Chembiochem; 2020 Apr; 21(8):1136-1139. PubMed ID: 31742805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swapping structural determinants of ribonucleases: an energetic analysis of the hinge peptide 16-22.
    Mazzarella L; Vitagliano L; Zagari A
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3799-803. PubMed ID: 7731986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of Domain-Swapping to Identify Candidate Amino Acids Involved in Differential Interactions between Two Allelic Variants of Type-1 S-Locus F-Box Protein and S3-RNase in Petunia inflata.
    Wu L; Williams JS; Wang N; Khatri WA; San Román D; Kao TH
    Plant Cell Physiol; 2018 Feb; 59(2):234-247. PubMed ID: 29149301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family.
    Rosenberg HF; Dyer KD
    Nucleic Acids Res; 1996 Sep; 24(18):3507-13. PubMed ID: 8836175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of a T cell-inducing epitope of bovine ribonuclease that can be restricted by multiple class II molecules.
    Chen JS; Lorenz RG; Goldberg J; Allen PM
    J Immunol; 1991 Dec; 147(11):3672-8. PubMed ID: 1719084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of fully active RNase S by carboxypeptidase-degraded RNase S-peptide.
    POTTS JT; YOUNG DM; ANFINSEN CB
    J Biol Chem; 1963 Jul; 238():2593-4. PubMed ID: 13985757
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.