These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6573681)

  • 1. Extraneuronal saxitoxin binding sites in rabbit myelinated nerve.
    Ritchie JM; Rang HP
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2803-7. PubMed ID: 6573681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium channels in the axolemma of normal and degenerating rabbit optic nerve.
    Pellegrino RG; Ritchie JM
    Proc R Soc Lond B Biol Sci; 1984 Aug; 222(1227):155-60. PubMed ID: 6148755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Events in degenerating cat peripheral nerve: induction of Schwann cell S phase and its relation to nerve fibre degeneration.
    Pellegrino RG; Politis MJ; Ritchie JM; Spencer PS
    J Neurocytol; 1986 Feb; 15(1):17-28. PubMed ID: 3086507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium channels in the cytoplasm of Schwann cells.
    Ritchie JM; Black JA; Waxman SG; Angelides KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9290-4. PubMed ID: 2174558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Components of the plasma membrane of growing axons. III. Saxitoxin binding to sodium channels.
    Strichartz GR; Small RK; Pfenninger KH
    J Cell Biol; 1984 Apr; 98(4):1444-52. PubMed ID: 6325471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath.
    Ritchie JM; Rogart RB
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):211-5. PubMed ID: 299947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves.
    Ritchie JM; Rogart RB; Strichartz GR
    J Physiol; 1976 Oct; 261(2):477-94. PubMed ID: 978583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells.
    Shrager P; Chiu SY; Ritchie JM
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):948-52. PubMed ID: 2579384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter.
    Hunt D; Hossain-Ibrahim K; Mason MR; Coffin RS; Lieberman AR; Winterbottom J; Anderson PN
    BMC Neurosci; 2004 Mar; 5():9. PubMed ID: 15113454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium and potassium channels in regenerating and developing mammalian myelinated nerves.
    Ritchie JM
    Proc R Soc Lond B Biol Sci; 1982 Jun; 215(1200):273-87. PubMed ID: 6127708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myelinated fiber regeneration after crush injury is retarded in sciatic nerves of aging mice.
    Tanaka K; Webster HD
    J Comp Neurol; 1991 Jun; 308(2):180-7. PubMed ID: 1890237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding of labelled saxitoxin to the sodium channels in nerve membranes.
    Henderson R; Ritchie JM; Strichartz GR
    J Physiol; 1973 Dec; 235(3):783-804. PubMed ID: 4772409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of paranodal myelin detachment and sodium channel loss in vivo by Campylobacter jejuni DNA-binding protein from starved cells (C-Dps) in myelinated nerve fibers.
    Piao H; Minohara M; Kawamura N; Li W; Mizunoe Y; Umehara F; Goto Y; Kusunoki S; Matsushita T; Ikenaka K; Maejima T; Nabekura J; Yamasaki R; Kira J
    J Neurol Sci; 2010 Jan; 288(1-2):54-62. PubMed ID: 19880143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The perineurium modifies the effects of phenol and glycerol in rat sciatic nerve.
    Westerlund T; Vuorinen V; Röyttä M
    Acta Neuropathol; 2004 Oct; 108(4):319-31. PubMed ID: 15300450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc status and peripheral nerve function in guinea pigs.
    O'Dell BL; Conley-Harrison J; Besch-Williford C; Browning JD; O'Brien D
    FASEB J; 1990 Aug; 4(11):2919-22. PubMed ID: 2165949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of slow Wallerian degeneration for regenerating motor and sensory axons.
    Brown MC; Lunn ER; Perry VH
    J Neurobiol; 1992 Jul; 23(5):521-36. PubMed ID: 1431835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal transport of 16S acetylcholinesterase is increased in regenerating peripheral nerve in guinea-pig, but not in rat.
    Engel AK; Tetzlaff W; Kreutzberg GW
    Neuroscience; 1988 Feb; 24(2):729-38. PubMed ID: 2452380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion and proliferation are enhanced in vitro in Schwann cells from nerve undergoing Wallerian degeneration.
    Komiyama A; Novicki DL; Suzuki K
    J Neurosci Res; 1991 Jul; 29(3):308-18. PubMed ID: 1920531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve.
    Waxman SG; Black JA; Kocsis JD; Ritchie JM
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1406-10. PubMed ID: 2537496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic shifts in myelinated nerve fibers during early stages of Wallerian degeneration.
    Schlote W; Wolburg H; Wendt-Gallitelli MF
    Acta Neuropathol Suppl; 1981; 7():31-5. PubMed ID: 6164239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.