These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 6574311)
1. [Method of conformational calculations of large fragments of nucleic acids. IV. Comparative calculations of dinucleotides by the fragment and atom-atom methods]. Vorob'ev IuN Mol Biol (Mosk); 1983; 17(2):271-8. PubMed ID: 6574311 [TBL] [Abstract][Full Text] [Related]
2. [Method for conformation calculations of large fragments of nucleic acids. I. Models for conformational energy surface ribose and 2'-deoxyribose]. Vorob'ev IuN Mol Biol (Mosk); 1981; 15(3):517-25. PubMed ID: 6789143 [TBL] [Abstract][Full Text] [Related]
3. [Method for conformational calculations of large fragments of nucleic acids. III. Long range interactions]. Vorob'ev IuN Mol Biol (Mosk); 1983; 17(2):257-70. PubMed ID: 6855755 [TBL] [Abstract][Full Text] [Related]
5. [Simulation of DNA conformation possibilities by means of nonbonded interaction energy calculations of complementary dinucleoside phosphate complexes]. Poltev VI; Milova LA; Zhorov BS; Govyrin VA Mol Biol (Mosk); 1978; 12(6):1319-28. PubMed ID: 745605 [TBL] [Abstract][Full Text] [Related]
6. [Method of conformational calculations of large fragments of nucleic acids. II. Short-range interactions]. Vorob'ev IuN Mol Biol (Mosk); 1983; 17(1):181-91. PubMed ID: 6191194 [No Abstract] [Full Text] [Related]
7. A Monte Carlo method for generating structures of short single-stranded DNA sequences. Erie DA; Breslauer KJ; Olson WK Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940 [TBL] [Abstract][Full Text] [Related]
8. [Study of the flexibility of complementary dinucleoside phosphates by the Monte-Carlo method]. Ul'ianov NB; Zhurkin VB Mol Biol (Mosk); 1982; 16(5):1075-85. PubMed ID: 6958972 [TBL] [Abstract][Full Text] [Related]
9. [Possible conformations of nucleic acid fragments containing the base pair guanine:uracil]. Poltev VI; Zhorov BS Biofizika; 1982; 27(2):320-2. PubMed ID: 7074158 [TBL] [Abstract][Full Text] [Related]
10. DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures. Hunter CA; Lu XJ J Mol Biol; 1997 Feb; 265(5):603-19. PubMed ID: 9048952 [TBL] [Abstract][Full Text] [Related]
11. Block-units method for conformational calculations of large nucleic acid chains. I. Block-units approximation of atomic structure and conformational energy of polynucleotides. Vorobjev YuN Biopolymers; 1990; 29(12-13):1503-18. PubMed ID: 2117471 [TBL] [Abstract][Full Text] [Related]
12. Ab initio conformational analysis of nucleic acid components: intrinsic energetic contributions to nucleic acid structure and dynamics. Foloppe N; Nilsson L; MacKerell AD Biopolymers; 2001-2002; 61(1):61-76. PubMed ID: 11891629 [TBL] [Abstract][Full Text] [Related]
13. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
14. Block-units method for conformational calculations of large nucleic acid chains. II. The two-hierarchical approach and its application to conformational arrangement of the unusual T psi C loop of rabbit tRNA(Val). Vorobjev YN Biopolymers; 1990; 29(12-13):1519-29. PubMed ID: 2386804 [TBL] [Abstract][Full Text] [Related]
15. [A method of conformation calculations of large nucleic acid fragments. V. Conformation rearrangements of the modified T psi C-loop of phenylalanyl tRNA]. Vorob'ev IuN Mol Biol (Mosk); 1984; 18(4):933-44. PubMed ID: 6568404 [TBL] [Abstract][Full Text] [Related]
16. [Comparative conformational analysis of dinucleoside phosphate CpA and its analog C(3'NH)pA]. Il'icheva IA; Tumanian VG; KraevskiÄ AA; Kukhanova MK; Gottikh BP Mol Biol (Mosk); 1982; 16(6):1300-13. PubMed ID: 7155145 [TBL] [Abstract][Full Text] [Related]
17. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. Packer MJ; Hunter CA J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence studies of polyriboadenylic acid and dinucleoside monophosphates containing 1,N6-ethenoadenosine. Kubota Y; Sanjoh A; Fujisaki Y Nucleic Acids Symp Ser; 1982; (11):277-80. PubMed ID: 6963952 [TBL] [Abstract][Full Text] [Related]
19. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study. Law JM; Setiadi DH; Chass GA; Csizmadia IG; Viskolcz B J Phys Chem A; 2005 Jan; 109(3):520-33. PubMed ID: 16833374 [TBL] [Abstract][Full Text] [Related]
20. [The influence of complementary base pair interactions on secondary structure formation and conformational transitions in polynucleotides]. Khutorskii VE; Poltev VI Mol Biol (Mosk); 1975; 9(5):747-51. PubMed ID: 1214813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]