BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6574500)

  • 1. Reaction of glycolaldehyde with proteins: latent crosslinking potential of alpha-hydroxyaldehydes.
    Acharya AS; Manning JM
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3590-4. PubMed ID: 6574500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linking of proteins by aldotriose: reaction of the carbonyl function of the keto amines generated in situ with amino groups.
    Acharya AS; Cho YJ; Manjula BN
    Biochemistry; 1988 Jun; 27(12):4522-9. PubMed ID: 3166996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reversibility of the ketoamine linkages of aldoses with proteins.
    Acharya AS; Sussman LG
    J Biol Chem; 1984 Apr; 259(7):4372-8. PubMed ID: 6707011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model studies on the modification of proteins by lipoxidation-derived 2-hydroxyaldehydes.
    Liu Z; Sayre LM
    Chem Res Toxicol; 2003 Feb; 16(2):232-41. PubMed ID: 12588195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and kinetic characterization of nonenzymic and aldose reductase mediated covalent NADP-glycolaldehyde adduct formation.
    Grimshaw CE; Shahbaz M; Putney CG
    Biochemistry; 1990 Oct; 29(42):9936-46. PubMed ID: 2125485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification and Cross-Linking of Proteins by Glycolaldehyde and Glyoxal: A Model System.
    Klaus A; Rau R; Glomb MA
    J Agric Food Chem; 2018 Oct; 66(41):10835-10843. PubMed ID: 30296075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemistry of acetaldehyde-protein adducts.
    Tuma DJ; Hoffman T; Sorrell MF
    Alcohol Alcohol Suppl; 1991; 1():271-6. PubMed ID: 1845549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose.
    Watkins NG; Thorpe SR; Baynes JW
    J Biol Chem; 1985 Sep; 260(19):10629-36. PubMed ID: 4030761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of acetaldehyde with proteins: formation of stable fluorescent adducts.
    Hoffmann T; Meyer RJ; Sorrell MF; Tuma DJ
    Alcohol Clin Exp Res; 1993 Feb; 17(1):69-74. PubMed ID: 8452210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein.
    Eble AS; Thorpe SR; Baynes JW
    J Biol Chem; 1983 Aug; 258(15):9406-12. PubMed ID: 6409904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Schiff base formation with amino acids enhances light emission and damage induced in neutrophils by phenylacetaldehyde.
    Nascimento AL; Cilento G
    Biochim Biophys Acta; 1989 Apr; 991(1):50-5. PubMed ID: 2540843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Evidence for the Diversity of Mechanisms and Protonated Schiff Bases Formed in the Non-Enzymatic Covalent Protein Modification (NECPM) of HbA by the Hydrate and Aldehydic Forms of Acetaldehyde and Glyceraldehyde.
    Lewis J; Smith BA; Oakes H; Holman RW; Rodnick KJ
    Cogent Biol; 2019; 5():. PubMed ID: 31440524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13C NMR investigation of nonenzymatic glucosylation of protein. Model studies using RNase A.
    Neglia CI; Cohen HJ; Garber AR; Ellis PD; Thorpe SR; Baynes JW
    J Biol Chem; 1983 Dec; 258(23):14279-83. PubMed ID: 6643480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldimine to ketoamine isomerization (Amadori rearrangement) potential at the individual nonenzymic glycation sites of hemoglobin A: preferential inhibition of glycation by nucleophiles at sites of low isomerization potential.
    Acharya AS; Roy RP; Dorai B
    J Protein Chem; 1991 Jun; 10(3):345-58. PubMed ID: 1910466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ligation state and concentration of hemoglobin A on its cross-linking by glycolaldehyde: functional properties of cross-linked, carboxymethylated hemoglobin.
    Manning LR; Manning JM
    Biochemistry; 1988 Aug; 27(17):6640-4. PubMed ID: 3219360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent binding of acetaldehyde to tubulin: evidence for preferential binding to the alpha-chain.
    Jennett RB; Sorrell MF; Johnson EL; Tuma DJ
    Arch Biochem Biophys; 1987 Jul; 256(1):10-8. PubMed ID: 3606116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic crosslinking of proteins. II. Photocrosslinking of a model protein-ribonuclease A.
    Shen HR; Spikes JD; Kopecková P; Kopecek J
    J Photochem Photobiol B; 1996 Sep; 35(3):213-9. PubMed ID: 8933727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amadori rearrangement of glyceraldehyde-hemoglobin Schiff base adducts. A new procedure for the determination of ketoamine adducts in proteins.
    Acharya AS; Manning JM
    J Biol Chem; 1980 Aug; 255(15):7218-24. PubMed ID: 7391079
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.