These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6574501)

  • 41. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2',5')guanosine.
    Vitagliano L; Merlino A; Zagari A; Mazzarella L
    Protein Sci; 2000 Jun; 9(6):1217-25. PubMed ID: 10892814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of substrate UpA binding to RNase A--computer modelling and energetics approach.
    Seshadri K; Rao VS; Vishveshwara S
    J Biomol Struct Dyn; 1994 Dec; 12(3):581-603. PubMed ID: 7727060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity.
    Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M
    Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. QM/MM simulation (B3LYP) of the RNase A cleavage-transesterification reaction supports a triester A(N) + D(N) associative mechanism with an O2' H internal proton transfer.
    Elsässer B; Fels G; Weare JH
    J Am Chem Soc; 2014 Jan; 136(3):927-36. PubMed ID: 24372083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of water structure around biomolecules using X-ray and neutron diffraction methods.
    Savage H; Wlodawer A
    Methods Enzymol; 1986; 127():162-83. PubMed ID: 3736419
    [No Abstract]   [Full Text] [Related]  

  • 47. Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin.
    Phillips SE; Schoenborn BP
    Nature; 1981 Jul; 292(5818):81-2. PubMed ID: 7278969
    [No Abstract]   [Full Text] [Related]  

  • 48. X-ray structure of a ribonuclease A-uridine vanadate complex at 1.3 A resolution.
    Ladner JE; Wladkowski BD; Svensson LA; Sjölin L; Gilliland GL
    Acta Crystallogr D Biol Crystallogr; 1997 May; 53(Pt 3):290-301. PubMed ID: 15299932
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding.
    Bass MB; Hopkins DF; Jaquysh WA; Ornstein RL
    Proteins; 1992 Mar; 12(3):266-77. PubMed ID: 1372979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanism of binding of a polynucleotide chain to pancreatic ribonuclease.
    McPherson A; Brayer G; Cascio D; Williams R
    Science; 1986 May; 232(4751):765-8. PubMed ID: 3961503
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzyme specificity: base recognition and hydrolysis of RNA by ribonuclease A.
    Borkakoti N
    FEBS Lett; 1983 Oct; 162(2):367-73. PubMed ID: 6195018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A.
    Laity JH; Lester CC; Shimotakahara S; Zimmerman DE; Montelione GT; Scheraga HA
    Biochemistry; 1997 Oct; 36(42):12683-99. PubMed ID: 9335525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct determination of the hydrogen bonding arrangement in anhydrous β-chitin by neutron fiber diffraction.
    Sawada D; Nishiyama Y; Langan P; Forsyth VT; Kimura S; Wada M
    Biomacromolecules; 2012 Jan; 13(1):288-91. PubMed ID: 22145696
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computer modelling studies of ribonuclease A-pyrimidine nucleotide complexes.
    Seshadri K; Balaji PV; Rao VS; Vishveshwara S
    J Biomol Struct Dyn; 1993 Oct; 11(2):395-415. PubMed ID: 8286064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP.
    Ishikawa K; Suzuki E; Tanokura M; Takahashi K
    Biochemistry; 1996 Jun; 35(25):8329-34. PubMed ID: 8679590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein.
    Johnson RJ; McCoy JG; Bingman CA; Phillips GN; Raines RT
    J Mol Biol; 2007 Apr; 368(2):434-49. PubMed ID: 17350650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neutron Nucleic Acid Crystallography.
    Chatake T
    Methods Mol Biol; 2016; 1320():283-300. PubMed ID: 26227050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of a tyrosine side chain to ribonuclease A catalysis and stability.
    Eberhardt ES; Wittmayer PK; Templer BM; Raines RT
    Protein Sci; 1996 Aug; 5(8):1697-703. PubMed ID: 8844858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of joint neutron and x-ray refinement to the investigation of the structure of ribonuclease A at 2.0-A resolution.
    Wlodawer A; Sjölin L
    Basic Life Sci; 1984; 27():349-64. PubMed ID: 6712570
    [No Abstract]   [Full Text] [Related]  

  • 60. "Sandwiched" water molecule between pyrimidine bases and intra-molecular C-H ... Q hydrogen bonding in 5-nitro-1-(beta-D-ribosyluronic acid)-uracil monohydrate.
    Srikrishnan T; Parthasarathy R
    Nature; 1976 Nov; 264(5584):379-80. PubMed ID: 1004565
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.