These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 6574507)

  • 21. Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties.
    Njegic B; Gordon MS
    J Chem Phys; 2006 Dec; 125(22):224102. PubMed ID: 17176129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectrographic representation of globular protein breathing motions.
    Pickover CA
    Science; 1984 Jan; 223(4632):181-2. PubMed ID: 6691144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustering of atomic displacement parameters in bovine trypsin reveals a distributed lattice of atoms with shared chemical properties.
    Gagnér VA; Lundholm I; Garcia-Bonete MJ; Rodilla H; Friedman R; Zhaunerchyk V; Bourenkov G; Schneider T; Stake J; Katona G
    Sci Rep; 2019 Dec; 9(1):19281. PubMed ID: 31848402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anharmonic calculation of the structure, vibrational frequencies and intensities of the NH3···trans-HONO complex.
    Bulychev VP; Buturlimova MV; Tokhadze KG
    J Phys Chem A; 2013 Sep; 117(37):9093-8. PubMed ID: 23944642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trypsin-pancreatic secretory isoinhibitor A from bovine pancreas (Kazal type). Spectroscopic study on structure and stability.
    Menegatti E; Salvadori S; Guarneri M; Scatturin A
    Int J Pept Protein Res; 1983 May; 21(5):562-7. PubMed ID: 6885242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
    Diehl M; Doster W; Petry W; Schober H
    Biophys J; 1997 Nov; 73(5):2726-32. PubMed ID: 9370466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrational spectroscopy of the G...C base pair: experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings.
    Brauer B; Gerber RB; Kabelác M; Hobza P; Bakker JM; Abo Riziq AG; de Vries MS
    J Phys Chem A; 2005 Aug; 109(31):6974-84. PubMed ID: 16834057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
    Hilton BD; Woodward CK
    Biochemistry; 1979 Dec; 18(26):5834-41. PubMed ID: 42434
    [No Abstract]   [Full Text] [Related]  

  • 29. Dynamics of a protein and water molecules surrounding the protein: hydrogen-bonding between vibrating water molecules and a fluctuating protein.
    Yoshioki S
    J Comput Chem; 2002 Feb; 23(3):402-13. PubMed ID: 11908503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of normal mode analyses on a small globular protein in dihedral angle space and Cartesian coordinate space.
    Kitao A; Hayward S; Go N
    Biophys Chem; 1994 Oct; 52(2):107-14. PubMed ID: 17020826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anharmonicity of Vibrational Modes in Hydrogen Chloride-Water Mixtures.
    Perlt E; Berger SA; Kelterer AM; Kirchner B
    J Chem Theory Comput; 2019 Apr; 15(4):2535-2547. PubMed ID: 30811198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational spectroscopy of protonated imidazole and its complexes with water molecules: ab initio anharmonic calculations and experiments.
    Adesokan AA; Chaban GM; Dopfer O; Gerber RB
    J Phys Chem A; 2007 Aug; 111(31):7374-81. PubMed ID: 17500546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anharmonic Backbone Vibrations in Ultrafast Processes at the DNA-Water Interface.
    Siebert T; Guchhait B; Liu Y; Costard R; Elsaesser T
    J Phys Chem B; 2015 Jul; 119(30):9670-7. PubMed ID: 26125542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: a Raman scattering and molecular dynamics simulation study.
    Lerbret A; Affouard F; Bordat P; Hédoux A; Guinet Y; Descamps M
    J Chem Phys; 2009 Dec; 131(24):245103. PubMed ID: 20059115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy].
    Sherman SA; Andrianov AM
    Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Conformational aspects of beta-trypsin interaction with substrates and pancreatic trypsin inhibitor. III. Catalytic act of trypsin and its inhibition].
    Popov EM; Godzhaev NM; Aliev RE
    Mol Biol (Mosk); 1986; 20(2):357-68. PubMed ID: 3702867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential equation model to study dynamic behaviour of globular proteins.
    Ponnuswamy PK; Bhaskaran R
    Int J Pept Protein Res; 1984 Aug; 24(2):168-79. PubMed ID: 6090329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational dynamics of DNA. I. Vibrational basis modes and couplings.
    Lee C; Park KH; Cho M
    J Chem Phys; 2006 Sep; 125(11):114508. PubMed ID: 16999491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.
    Levitt M; Sander C; Stern PS
    J Mol Biol; 1985 Feb; 181(3):423-47. PubMed ID: 2580101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin.
    Thirumuruganandham SP; Urbassek HM
    J Mol Model; 2009 Aug; 15(8):959-69. PubMed ID: 19189139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.