These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6575830)

  • 1. Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state.
    Lijk LJ; Kalk KH; Brandenburg NP; Hol WG
    Biochemistry; 1983 Jun; 22(12):2952-7. PubMed ID: 6575830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The high resolution three-dimensional structure of bovine liver rhodanese.
    Hol WG; Lijk LJ; Kalk KH
    Fundam Appl Toxicol; 1983; 3(5):370-6. PubMed ID: 6357922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceptor substrate-potentiated inactivation of bovine liver rhodanese.
    Aird BA; Horowitz PM
    J Biol Chem; 1988 Oct; 263(30):15270-6. PubMed ID: 3170581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibition of rhodanese by lipoate and iron-sulfur proteins.
    Pagani S; Bonomi F; Cerletti P
    Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetracyanonickelate probes the active site of sulfur-free rhodanese.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Dec; 260(29):15516-21. PubMed ID: 3864780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal.
    Weng L; Heinrikson RL; Westley J
    J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of metal-ion binding on rhodanese activity.
    Volini M; Van Sweringen B; Chen FS
    Arch Biochem Biophys; 1978 Nov; 191(1):205-15. PubMed ID: 736562
    [No Abstract]   [Full Text] [Related]  

  • 10. The covalent and tertiary structure of bovine liver rhodanese.
    Ploegman JH; Drent G; Kalk KH; Hol WG; Heinrikson RL; Keim P; Weng L; Russell J
    Nature; 1978 May; 273(5658):124-9. PubMed ID: 643076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soaking in Cs2SO4 reveals a caesium-aromatic interaction in bovine-liver rhodanese.
    Kooystra PJ; Kalk KH; Hol WG
    Eur J Biochem; 1988 Nov; 177(2):345-9. PubMed ID: 3191921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of rhodanese with intermediates of oxygen reduction.
    Cannella C; Berni R
    FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial rhodanese: membrane-bound and complexed activity.
    Ogata K; Volini M
    J Biol Chem; 1990 May; 265(14):8087-93. PubMed ID: 2335518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of tritium exchange to detect conformational differences between intermediates in catalysis by the enzyme rhodanese.
    Horowitz P; Falksen K
    Biochim Biophys Acta; 1983 Sep; 747(1-2):37-41. PubMed ID: 6576809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase.
    Bonomi F; Pagani S; Cerletti P; Cannella C
    Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiosulfate: cyanide sulfurtransferase (rhodanese).
    Westley J
    Methods Enzymol; 1981; 77():285-91. PubMed ID: 6948991
    [No Abstract]   [Full Text] [Related]  

  • 19. New crystalline derivatives of bovine liver rhodanese.
    Berni R; Cannella C; Monaco HL; Rossi GL
    Biochem Int; 1986 May; 12(5):733-40. PubMed ID: 3460592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of an Escherichia coli rhodanese.
    Alexander K; Volini M
    J Biol Chem; 1987 May; 262(14):6595-604. PubMed ID: 3553189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.