BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 6578515)

  • 1. Production and characterization of a monoclonal antibody directed against the 43,000-dalton v1 polypeptide from Torpedo marmorata electric organ.
    Nghiêm HO; Cartaud J; Dubreuil C; Kordeli C; Buttin G; Changeux JP
    Proc Natl Acad Sci U S A; 1983 Oct; 80(20):6403-7. PubMed ID: 6578515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibody directed against the 43 000 dalton v1 polypeptide from Torpedo marmorata electric organ.
    Nghiêm HO; Cartaud J; Dubreuil C; Kordeli C; Petit-Koskas E; Buttin G; Changeux JP
    Dev Biol Stand; 1984; 57():393-8. PubMed ID: 6526147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies.
    Froehner SC
    J Cell Biol; 1984 Jul; 99(1 Pt 1):88-96. PubMed ID: 6376523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal proteins at the cholinergic synapse: distribution of desmin, actin, fodrin, neurofilaments, and tubulin in Torpedo electric organ.
    Walker JH; Boustead CM; Witzemann V; Shaw G; Weber K; Osborn M
    Eur J Cell Biol; 1985 Jul; 38(1):123-33. PubMed ID: 3896807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. nu 1, a Mr 43,000 component of postsynaptic membranes, is a protein kinase.
    Gordon AS; Milfay D
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4172-4. PubMed ID: 3459169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies.
    Sealock R; Wray BE; Froehner SC
    J Cell Biol; 1984 Jun; 98(6):2239-44. PubMed ID: 6725413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ.
    Cartaud J; Sobel A; Rousselet A; Devaux PF; Changeux JP
    J Cell Biol; 1981 Aug; 90(2):418-26. PubMed ID: 7287814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica.
    Gullick WJ; Lindstrom JM
    Biochemistry; 1983 Jul; 22(14):3312-20. PubMed ID: 6615777
    [No Abstract]   [Full Text] [Related]  

  • 9. 300-kD subsynaptic protein copurifies with acetylcholine receptor-rich membranes and is concentrated at neuromuscular synapses.
    Woodruff ML; Theriot J; Burden SJ
    J Cell Biol; 1987 Apr; 104(4):939-46. PubMed ID: 3558487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane topology of acetylcholine receptor subunits probed with photoreactive phospholipids.
    Giraudat J; Montecucco C; Bisson R; Changeux JP
    Biochemistry; 1985 Jun; 24(13):3121-7. PubMed ID: 4027235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinic postsynaptic membranes from Torpedo: sidedness, permeability to macromolecules, and topography of major polypeptides.
    St John PA; Froehner SC; Goodenough DA; Cohen JB
    J Cell Biol; 1982 Feb; 92(2):333-42. PubMed ID: 6174528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 43-K protein, v1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein.
    Walker JH; Boustead CM; Witzemann V
    EMBO J; 1984 Oct; 3(10):2287-90. PubMed ID: 6389118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Importance of protein-protein interactions for the structural integrity of membrane framents from Torpedo marmorata electric organ].
    Rousselet A; Cartaud J; Devaux PF
    C R Seances Acad Sci D; 1979 Sep; 289(5):461-3. PubMed ID: 229987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural heterogeneity and subcellular distribution of nicotinic synapse-associated proteins.
    Gysin R; Wirth M; Flanagan SD
    J Biol Chem; 1981 Nov; 256(22):11373-6. PubMed ID: 7298607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenic similarities between the subunits of acetylcholine receptor from Torpedo marmorata.
    Mehraban F; Dolly JO; Barnard EA
    FEBS Lett; 1982 May; 141(1):1-5. PubMed ID: 6177554
    [No Abstract]   [Full Text] [Related]  

  • 16. Asymmetric distribution of dystrophin in developing and adult Torpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane.
    Jasmin BJ; Cartaud A; Ludosky MA; Changeux JP; Cartaud J
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3938-41. PubMed ID: 2187196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle.
    Sealock R; Butler MH; Kramarcy NR; Gao KX; Murnane AA; Douville K; Froehner SC
    J Cell Biol; 1991 Jun; 113(5):1133-44. PubMed ID: 2040646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in the subcellular distribution of the 43K (v1) polypeptides in Torpedo marmorata electrocyte: support for a role in acetylcholine receptor stabilization.
    Nghiêm HO; Hill J; Changeux JP
    Development; 1991 Dec; 113(4):1059-67. PubMed ID: 1726468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antigenic glycopeptides from electroplax membranes of Torpedo marmorata [proceedings].
    Harrison R; Lunt GG; Roast CR
    Biochem Soc Trans; 1978; 6(3):639. PubMed ID: 78864
    [No Abstract]   [Full Text] [Related]  

  • 20. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes.
    Wallimann T; Walzthöny D; Wegmann G; Moser H; Eppenberger HM; Barrantes FJ
    J Cell Biol; 1985 Apr; 100(4):1063-72. PubMed ID: 3884630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.