These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6580615)

  • 1. Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanisms of electron transfer proteins.
    Meyer TE; Przysiecki CT; Watkins JA; Bhattacharyya A; Simondsen RP; Cusanovich MA; Tollin G
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6740-4. PubMed ID: 6580615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox pathways in electron-transfer proteins: correlations between reactivities, solvent exposure, and unpaired-spin-density distributions.
    Tollin G; Hanson LK; Caffrey M; Meyer TE; Cusanovich MA
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3693-7. PubMed ID: 3012528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser flash photolysis studies of electron transfer between ferredoxin-NADP+ reductase and several high-potential redox proteins.
    Bhattacharyya AK; Meyer TE; Cusanovich MA; Tollin G
    Biochemistry; 1987 Feb; 26(3):758-64. PubMed ID: 3032236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chicken liver sulfite oxidase. Kinetics of reduction by laser-photoreduced flavins and intramolecular electron transfer.
    Kipke CA; Cusanovich MA; Tollin G; Sunde RA; Enemark JH
    Biochemistry; 1988 Apr; 27(8):2918-26. PubMed ID: 3401455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of laser flash photolysis time-resolved spectrophotometry to investigate interprotein and intraprotein electron transfer mechanisms.
    Tollin G; Hurley JK; Hazzard JT; Meyer TE
    Biophys Chem; 1993 Dec; 48(2):259-79. PubMed ID: 8298059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies of a ferredoxin-dependent cyanobacterial nitrate reductase.
    Srivastava AP; Knaff DB; Sétif P
    Biochemistry; 2014 Aug; 53(31):5092-101. PubMed ID: 25040124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular dichroism and redox properties of high redox potential ferredoxins.
    Przysiecki CT; Meyer TE; Cusanovich MA
    Biochemistry; 1985 May; 24(10):2542-9. PubMed ID: 3925987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of flavin photochemistry to probe intraprotein and interprotein electron transfer mechanisms.
    Tollin G
    J Bioenerg Biomembr; 1995 Jun; 27(3):303-9. PubMed ID: 8847344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent effects of flavin electron transfer reactions.
    Ahmad I; Tollin G
    Biochemistry; 1981 Sep; 20(20):5925-8. PubMed ID: 7295708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components.
    Bhattacharyya A; Tollin G; McIntire W; Singer TP
    Biochem J; 1985 Jun; 228(2):337-45. PubMed ID: 2990445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the factors which determine reaction-rate constants and biological specificity for electron-transfer proteins.
    Tollin G; Meyer TE; Cusanovich MA
    Biochim Biophys Acta; 1986 Nov; 853(1):29-41. PubMed ID: 3533150
    [No Abstract]   [Full Text] [Related]  

  • 13. Dynamics and energetics of cyanobacterial photosystem I:ferredoxin complexes in different redox states.
    Sétif P; Mutoh R; Kurisu G
    Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):483-496. PubMed ID: 28427865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins.
    Gou P; Hanke GT; Kimata-Ariga Y; Standley DM; Kubo A; Taniguchi I; Nakamura H; Hase T
    Biochemistry; 2006 Dec; 45(48):14389-96. PubMed ID: 17128978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pH and exocyclic substitution on flavosemiquinone reactivity with redox proteins and inorganic oxidants.
    Przysiecki CT; Tollin G; Meyer TE; Staggers JE; Cusanovich MA
    Arch Biochem Biophys; 1985 Apr; 238(1):334-43. PubMed ID: 3985626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila.
    Meyer TE
    Biochim Biophys Acta; 1985 Jan; 806(1):175-83. PubMed ID: 2981543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, function and distribution of soluble bacterial redox proteins.
    Meyer TE; Cusanovich MA
    Biochim Biophys Acta; 1989 Jun; 975(1):1-28. PubMed ID: 2660909
    [No Abstract]   [Full Text] [Related]  

  • 18. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the exchange interactions to the redox properties of the [2Fe-2S] ferredoxins.
    Bertrand P; Gayda JP
    Biochim Biophys Acta; 1982 Jun; 680(3):331-5. PubMed ID: 7104324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of C-type cytochromes with the iron hexacyanides. Mechanistic implications.
    Ohno N; Cusanovich MA
    Biophys J; 1981 Dec; 36(3):589-605. PubMed ID: 6275920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.