These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 6580628)

  • 1. Structure-specific model of hemoglobin cooperativity.
    Lee AW; Karplus M
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7055-9. PubMed ID: 6580628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism.
    Lee AW; Karplus M; Poyart C; Bursaux E
    Biochemistry; 1988 Feb; 27(4):1285-301. PubMed ID: 2835088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen binding by single crystals of hemoglobin.
    Rivetti C; Mozzarelli A; Rossi GL; Henry ER; Eaton WA
    Biochemistry; 1993 Mar; 32(11):2888-906. PubMed ID: 8457555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carp hemoglobin. I. Precise oxygen equilibrium and analysis according to the models of Adair and of Monod, Wyman, and Changeux.
    Chien JC; Mayo KH
    J Biol Chem; 1980 Oct; 255(20):9790-9. PubMed ID: 7430103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic contributions to the understanding of hemoglobin function: implications for structural biology.
    Shulman RG
    IUBMB Life; 2001 Jun; 51(6):351-7. PubMed ID: 11758802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of teleost hemoglobin by Adair and Monod-Wyman-Changeux models. Effects of nucleoside triphosphates and pH on oxygenation of tench hemoglobin.
    Weber RE; Jensen FB; Cox RP
    J Comp Physiol B; 1987; 157(2):145-52. PubMed ID: 3571569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational change and cooperative ligand binding in hemoglobin.
    Otsuka J; Kunisawa T
    Adv Biophys; 1978; 11():53-92. PubMed ID: 27956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An extended Monod-Wyman-Changeaux-model expressed in terms of the Herzfeld-Stanley formalism applied to oxygen and carbonmonoxide binding curves of hemoglobin trout IV.
    Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1989 Apr; 55(4):691-701. PubMed ID: 2720067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic analysis of human hemoglobins in terms of the Perutz mechanism: extensions of the Szabo--Karplus model to include subunit assembly.
    Johnson ML; Ackers GK
    Biochemistry; 1982 Jan; 21(2):201-11. PubMed ID: 7074009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Bohr group salt bridges in cooperativity in hemoglobin.
    Kilmartin JV; Imai K; Jones RT; Faruqui AR; Fogg J; Baldwin JM
    Biochim Biophys Acta; 1978 May; 534(1):15-25. PubMed ID: 26416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, functional and conformational properties of rat hemoglobins.
    John ME
    Eur J Biochem; 1982 May; 124(2):305-10. PubMed ID: 6284505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen binding and subunit interaction of hemoglobin in relation to the two-state model.
    Gibson QH; Edelstein SJ
    J Biol Chem; 1987 Jan; 262(2):516-9. PubMed ID: 3804994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of subunit assembly and ligand binding in human hemoglobin.
    Ackers GK
    Biophys J; 1980 Oct; 32(1):331-46. PubMed ID: 7248452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermodynamic model of hemoglobin suitable for physiological applications.
    Yoshida T; Dembo M
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C563-77. PubMed ID: 2107752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model for the cooperative mechanism of human hemoglobin.
    Johnson ML; Turner BW; Ackers GK
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1093-7. PubMed ID: 6583698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism.
    Gelin BR; Lee AW; Karplus M
    J Mol Biol; 1983 Dec; 171(4):489-559. PubMed ID: 6663623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of allosteric models for hemoglobin.
    Eaton WA; Henry ER; Hofrichter J; Bettati S; Viappiani C; Mozzarelli A
    IUBMB Life; 2007; 59(8-9):586-99. PubMed ID: 17701554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stereochemical mechanism of the cooperative effects in hemoglobin revisited.
    Perutz MF; Wilkinson AJ; Paoli M; Dodson GG
    Annu Rev Biophys Biomol Struct; 1998; 27():1-34. PubMed ID: 9646860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiments on Hemoglobin in Single Crystals and Silica Gels Distinguish among Allosteric Models.
    Henry ER; Mozzarelli A; Viappiani C; Abbruzzetti S; Bettati S; Ronda L; Bruno S; Eaton WA
    Biophys J; 2015 Sep; 109(6):1264-72. PubMed ID: 26038112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.