These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
57 related articles for article (PubMed ID: 6582065)
21. Effect of retinoic acid on the proliferation and phagocytic capability of murine macrophage-like cell lines. Goldman R J Cell Physiol; 1984 Jul; 120(1):91-102. PubMed ID: 6736138 [TBL] [Abstract][Full Text] [Related]
22. Exogenous cytokines enhance survival of macrophages from organ cultured embryonic rat tissues. Sorokin SP; McNelly NA; Hoyt RF Anat Rec; 1994 Nov; 240(3):398-406. PubMed ID: 7825736 [TBL] [Abstract][Full Text] [Related]
23. Normal mouse serum contains peptides which induce fibroblasts to grow in soft agar. Rapp UR; Gunnell M; Marquardt H J Cell Biochem; 1983; 21(1):29-38. PubMed ID: 6603462 [TBL] [Abstract][Full Text] [Related]
24. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. Metcalf D; Nicola NA J Cell Physiol; 1983 Aug; 116(2):198-206. PubMed ID: 6602806 [TBL] [Abstract][Full Text] [Related]
25. Analysis of the tumorigenicity of the X gene of hepatitis B virus in a nontransformed hepatocyte cell line and the effects of cotransfection with a murine p53 mutant equivalent to human codon 249. Oguey D; Dumenco LL; Pierce RH; Fausto N Hepatology; 1996 Nov; 24(5):1024-33. PubMed ID: 8903370 [TBL] [Abstract][Full Text] [Related]
26. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. Leidi M; Gotti E; Bologna L; Miranda E; Rimoldi M; Sica A; Roncalli M; Palumbo GA; Introna M; Golay J J Immunol; 2009 Apr; 182(7):4415-22. PubMed ID: 19299742 [TBL] [Abstract][Full Text] [Related]
27. Recombinant human macrophage-colony stimulating factor suppresses the mouse mixed lymphocyte reaction. Sakurai T; Yamada M; Simamura S; Motoyoshi K Cell Immunol; 1996 Jul; 171(1):87-94. PubMed ID: 8660842 [TBL] [Abstract][Full Text] [Related]
28. Response of human myeloid leukemia cells to various sources of colony-stimulating activity and phytohemagglutinin-conditioned medium. Taetle R; Caviles A; Koziol J Cancer Res; 1983 May; 43(5):2350-7. PubMed ID: 6600965 [TBL] [Abstract][Full Text] [Related]
29. Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Sapi E; Flick MB; Rodov S; Gilmore-Hebert M; Kelley M; Rockwell S; Kacinski BM Cancer Res; 1996 Dec; 56(24):5704-12. PubMed ID: 8971179 [TBL] [Abstract][Full Text] [Related]
30. In vitro and in vivo characteristics of human squamous cell carcinoma of the head and neck cells engineered to secrete interleukin-2. Nagashima S; Reichert TE; Kashii Y; Suminami Y; Chikamatsu K; Whiteside TL Cancer Gene Ther; 1997; 4(6):366-76. PubMed ID: 9408607 [TBL] [Abstract][Full Text] [Related]
31. Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment. Hayase Y; Muguruma Y; Lee MY Exp Hematol; 1997 Jan; 25(1):19-25. PubMed ID: 8989902 [TBL] [Abstract][Full Text] [Related]
32. In vitro induction of inhibitory macrophage differentiation by granulocyte-macrophage colony-stimulating factor, stem cell factor and interferon-gamma from lineage phenotypes-negative c-kit-positive murine hematopoietic progenitor cells. Ferret-Bernard S; Saï P; Bach JM Immunol Lett; 2004 Feb; 91(2-3):221-7. PubMed ID: 15019293 [TBL] [Abstract][Full Text] [Related]
33. Isolation and characterization of human gastric cell lines with stem cell phenotypes. Yang YC; Wang SW; Hung HY; Chang CC; Wu IC; Huang YL; Lin TM; Tsai JL; Chen A; Kuo FC; Wang WM; Wu DC J Gastroenterol Hepatol; 2007 Sep; 22(9):1460-8. PubMed ID: 17645461 [TBL] [Abstract][Full Text] [Related]
34. [Clones of the lymphoblastoid line RPMI-6410t requiring an exogenous growth factor]. Seregina TM; Mekshenkov MI Ontogenez; 1986; 17(6):606-12. PubMed ID: 3029645 [TBL] [Abstract][Full Text] [Related]
35. [Relation between the attachment of cells to a substrate and their proliferative characteristics]. Bershadskiĭ AD; Brodskaia RM; Mansurov PG; Stavrovskaia AA; Stromskaia TP Eksp Onkol; 1984; 6(1):27-32. PubMed ID: 6209087 [TBL] [Abstract][Full Text] [Related]
36. Characterization of growth inhibitory factors for mouse monocytic leukemia cells. Kasukabe T; Okabe-Kado J; Honma Y; Hozumi M; Matsuda T; Hirano T Leuk Res; 1992; 16(2):139-44. PubMed ID: 1545566 [TBL] [Abstract][Full Text] [Related]
37. The characteristics of macrophage-like cell lines derived from normal sheep spleens. Ogmundsdóttir HM; Hardarson B; Steinarsdóttir M; Asgeirsson B FEMS Microbiol Immunol; 1991 Dec; 4(1):21-31. PubMed ID: 1815707 [TBL] [Abstract][Full Text] [Related]
38. A method for the derivation and continuous propagation of cloned murine bone marrow macrophages. Johnson CR; Kitz D; Little JR J Immunol Methods; 1983 Dec; 65(3):319-32. PubMed ID: 6655248 [TBL] [Abstract][Full Text] [Related]
39. Establishment and characterization of a polyploid mouse myeloid leukemia cell line useful for in-vivo examination of cell proliferation kinetics. Hayashi M; Okabe-Kado J; Hozumi M Leuk Res; 1987; 11(11):1011-7. PubMed ID: 3480395 [TBL] [Abstract][Full Text] [Related]
40. Development of annulate lamellae in mouse myeloblastic cell line when differentiated to macrophages. Hirai K; Maeda M; Ichikawa Y J Electron Microsc (Tokyo); 1983; 32(1):13-9. PubMed ID: 6578292 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]