These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 658236)

  • 1. Metabolic studies of Hg-203 on Chlamydomonas reinhardi.
    Macka W; Wihlidal H; Stehlik G; Washüttl J; Bancher E
    Experientia; 1978 May; 34(5):602-3. PubMed ID: 658236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae.
    Kelly D; Budd K; Lefebvre DD
    Appl Environ Microbiol; 2006 Jan; 72(1):361-7. PubMed ID: 16391065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D; Horvat M; Kotnik J
    J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of typical algae species (Aphanizomenon flosaquae and Microcystis aeruginosa) on photoreduction of Hg
    Sun R; Mo Y; Feng X; Zhang L; Jin L; Li Q
    J Environ Sci (China); 2019 Nov; 85():9-16. PubMed ID: 31471035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Chlamydomonas in a medium containing mercury.
    Ben-Bassat D; Shelef G; Gruner N; Shuval HI
    Nature; 1972 Nov; 240(5375):43-4. PubMed ID: 4571810
    [No Abstract]   [Full Text] [Related]  

  • 6. Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2-2.
    Takeuchi F; Iwahori K; Kamimura K; Negishi A; Maeda T; Sugio T
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):1981-6. PubMed ID: 11676009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).
    Figueiredo NL; Canário J; O'Driscoll NJ; Duarte A; Carvalho C
    Ecotoxicol Environ Saf; 2016 Feb; 124():60-67. PubMed ID: 26461264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreduction of mercury(II) in the presence of algae, Anabaena cylindrical.
    Deng L; Wu F; Deng N; Zuo Y
    J Photochem Photobiol B; 2008 May; 91(2-3):117-24. PubMed ID: 18375140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of Hg(II) by cyanobacteria.
    Lefebvre DD; Kelly D; Budd K
    Appl Environ Microbiol; 2007 Jan; 73(1):243-9. PubMed ID: 17071784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment.
    Gabriel MC; Williamson DG
    Environ Geochem Health; 2004 Dec; 26(4):421-34. PubMed ID: 15719165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disposition of inhaled mercury vapor in pregnant rats: maternal toxicity and effects on developmental outcome.
    Morgan DL; Chanda SM; Price HC; Fernando R; Liu J; Brambila E; O'Connor RW; Beliles RP; Barone S
    Toxicol Sci; 2002 Apr; 66(2):261-73. PubMed ID: 11896293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii.
    Bravo AG; Le Faucheur S; Monperrus M; Amouroux D; Slaveykova VI
    Environ Pollut; 2014 Sep; 192():212-5. PubMed ID: 24932531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle.
    Windmöller CC; Durão Júnior WA; de Oliveira A; do Valle CM
    Ecotoxicol Environ Saf; 2015 Feb; 112():201-11. PubMed ID: 25463872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Identification of a Facultative Bacterium Strain with the Ability to Methylate Mercury Under Both Aerobic and Anaerobic Conditions].
    Tao LL; Xiang YP; Wang DY; Huang ML; Shen H
    Huan Jing Ke Xue; 2016 Nov; 37(11):4389-4394. PubMed ID: 29964696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mutagenic activity of hydroxyurea in Chlamydomonas reinhardi.
    Adams M; Warr JR
    Mutat Res; 1976 Dec; 41(2-3):217-24. PubMed ID: 138084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury distribution, methylation and volatilization in microcosms with and without the sea anemone Bunodosoma caissarum.
    Rizzini Ansari N; Correia RRS; Fernandez MA; Cordeiro RC; Guimarães JRD
    Mar Pollut Bull; 2015 Mar; 92(1-2):105-112. PubMed ID: 25599628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1.
    Sugio T; Fujii M; Takeuchi F; Negishi A; Maeda T; Kamimura K
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1537-44. PubMed ID: 12913298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae.
    Kelly DJ; Budd K; Lefebvre DD
    Arch Microbiol; 2007 Jan; 187(1):45-53. PubMed ID: 17031617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.
    Lee SW; Lowry GV; Hsu-Kim H
    Environ Sci Process Impacts; 2016 Feb; 18(2):176-89. PubMed ID: 26745831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatilization of metal mercury from Organomercurials by highly mercury-resistant Acidithiobacillus ferrooxidans MON-1.
    Sugio T; Komoda T; Okazaki Y; Takeda Y; Nakamura S; Takeuchi F
    Biosci Biotechnol Biochem; 2010; 74(5):1007-12. PubMed ID: 20460735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.