BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 6583699)

  • 1. Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrillar proteins.
    Matsuda R; Spector D; Strohman RC
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1122-5. PubMed ID: 6583699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of denervation on the isoform transitions of tropomyosin, troponin T, and myosin isozyme in chicken breast muscle.
    Obinata T; Saitoh O; Takano-Ohmuro H
    J Biochem; 1984 Feb; 95(2):585-8. PubMed ID: 6715315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms.
    Matsuda R; Spector DH; Strohman RC
    Dev Biol; 1983 Dec; 100(2):478-88. PubMed ID: 6653881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between the protein and mRNA levels for myosin light chains and tropomyosin subunits during chick fast muscle development in vivo.
    Roy RK; Sarkar S
    FEBS Lett; 1982 Nov; 149(1):22-8. PubMed ID: 7152031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression of myofibrillar proteins in single muscle fibers of adult chicken: micro two dimensional gel electrophoretic analysis.
    Mikawa T; Takeda S; Shimizu T; Kitaura T
    J Biochem; 1981 Jun; 89(6):1951-62. PubMed ID: 7287667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin heavy chain expression during development and following denervation of fast fibers in the red strip of the chicken pectoralis.
    Shear CR; Bandman E; Rosser BW
    Dev Biol; 1988 Jun; 127(2):326-37. PubMed ID: 3378666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denervated chicken pectoral muscle.
    Cerny LC; Bandman E
    Dev Biol; 1987 Feb; 119(2):350-62. PubMed ID: 3542634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denervated chicken breast muscle displays discoordinate regulation and differential patterns of expression of alpha f and beta tropomyosin genes.
    Gupta MP; Wiesner RJ; Mouly V; Zak R; Lemonnier M
    J Muscle Res Cell Motil; 1993 Aug; 14(4):377-84. PubMed ID: 8227295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transitions from fetal to fast troponin T isoforms are coordinated with changes in tropomyosin and alpha-actinin isoforms in developing rabbit skeletal muscle.
    Briggs MM; McGinnis HD; Schachat F
    Dev Biol; 1990 Aug; 140(2):253-60. PubMed ID: 2373251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate-filament proteins.
    Crisona NJ; Strohman RC
    J Cell Biol; 1983 Mar; 96(3):684-92. PubMed ID: 6833377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.
    Salviati G; Betto R; Danieli Betto D
    Biochem J; 1982 Nov; 207(2):261-72. PubMed ID: 6186242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of myofibrillar proteins in skeletal muscles of septic mice.
    Moarbes V; Mayaki D; Huck L; Leblanc P; Vassilakopoulos T; Petrof BJ; Hussain SNA
    Physiol Rep; 2019 Oct; 7(20):e14248. PubMed ID: 31660704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of cDNA sequences corresponding to myosin light chains 1, 2, and 3, troponin-C, troponin-T, alpha-tropomyosin, and alpha-actin.
    Garfinkel LI; Periasamy M; Nadal-Ginard B
    J Biol Chem; 1982 Sep; 257(18):11078-86. PubMed ID: 6179945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of innervation for development and maintenance of troponin subunit isoform patterns in fast- and slow-twitch muscles of the rabbit.
    Leeuw T; Kapp M; Pette D
    Differentiation; 1994 Feb; 55(3):193-201. PubMed ID: 8187981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles.
    Swynghedauw B
    Physiol Rev; 1986 Jul; 66(3):710-71. PubMed ID: 2942954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins.
    Hastings KE; Emerson CP
    Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1553-7. PubMed ID: 6951196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunochemical analysis of troponin T isoforms in adult, embryonic, regenerating, and denervated chicken fast skeletal muscles.
    Shimizu N; Shimada Y
    Dev Biol; 1985 Oct; 111(2):324-34. PubMed ID: 3899776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigations on the hypokinesis of skeletal muscles with different functions, V.
    Takács O; Szöör A; Sohár I; Kesztyüs L; Guba F
    Acta Biol Acad Sci Hung; 1981; 32(1):33-43. PubMed ID: 7282208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional differences in the expression of myosin light chains and tropomyosin subunits during development of chicken breast muscle.
    Matsuda R; Bandman E; Strohman RC
    Dev Biol; 1983 Feb; 95(2):484-91. PubMed ID: 6825943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the ontogeny of cardiac gene transcripts.
    Murrell WG; Masters CJ; Willis RJ; Crane DI
    Mech Ageing Dev; 1994 Dec; 77(2):109-26. PubMed ID: 7745990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.