These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 658404)
41. Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats. Devynck MA; Pernollet MG; Nunez AM; Meyer P Hypertension; 1981; 3(4):397-403. PubMed ID: 6458563 [TBL] [Abstract][Full Text] [Related]
42. Uphill and selective transport of phosphoenolpyruvate through red cell membrane. Hamasaki N; Harasaki H; Tomoda A; Minakami S Acta Biol Med Ger; 1977; 36(5-6):913-8. PubMed ID: 23641 [No Abstract] [Full Text] [Related]
43. Inhibition of erythrocyte calcium transport by cetiedil. Levine SN; Berkowitz LR; Orringer EP Pharmacology; 1988; 36(1):44-51. PubMed ID: 2829242 [TBL] [Abstract][Full Text] [Related]
44. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. Mercer RW; Dunham PB J Gen Physiol; 1981 Nov; 78(5):547-68. PubMed ID: 6273495 [TBL] [Abstract][Full Text] [Related]
45. Inhibition of active strontium transport from erythrocyte ghosts by internal calcium: evidence for a specificity controlling site. Olson EJ J Membr Biol; 1979 Jul; 48(3):265-84. PubMed ID: 490627 [TBL] [Abstract][Full Text] [Related]
46. Active calcium transport in red cell ghosts resealed in dextran solutions. Romero PJ Biochim Biophys Acta; 1981 Dec; 649(2):404-18. PubMed ID: 6172149 [TBL] [Abstract][Full Text] [Related]
47. Alteration of calcium transport in Duchenne erythrocytes. Mollman JE; Cardenas JC; Pleasure DE Neurology; 1980 Nov; 30(11):1236-9. PubMed ID: 7191520 [TBL] [Abstract][Full Text] [Related]
48. Urate transport in human red blood cells. Activation by ATP. Lucas-Heron B; Fontenaille C Biochim Biophys Acta; 1979 May; 553(2):284-94. PubMed ID: 36146 [TBL] [Abstract][Full Text] [Related]
49. The plasma membrane calcium pump: regulation by a soluble Ca2+ binding protein. Vincenzi FF; Larsen FL Fed Proc; 1980 May; 39(7):2427-31. PubMed ID: 6445289 [TBL] [Abstract][Full Text] [Related]
50. Calmodulin regulation of the Ca2+ pump of erythrocyte membranes. Penniston JT; Graf E; Itano T Ann N Y Acad Sci; 1980; 356():245-57. PubMed ID: 6453544 [No Abstract] [Full Text] [Related]
51. Dinitrophenyl glutathione efflux from human erythrocytes is primary active ATP-dependent transport. LaBelle EF; Singh SV; Srivastava SK; Awasthi YC Biochem J; 1986 Sep; 238(2):443-9. PubMed ID: 3643022 [TBL] [Abstract][Full Text] [Related]
52. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes. Brown AM Biochim Biophys Acta; 1979 Jun; 554(1):195-203. PubMed ID: 378257 [TBL] [Abstract][Full Text] [Related]
53. Leukotriene C(4) (LTC(4)) does not share a cellular efflux mechanism with cGMP: characterisation of cGMP transport by uptake to inside-out vesicles from human erythrocytes. Sundkvist E; Jaeger R; Sager G Biochim Biophys Acta; 2000 Jan; 1463(1):121-30. PubMed ID: 10631301 [TBL] [Abstract][Full Text] [Related]
54. ATP does not regulate the reconstituted glucose transporter. Wheeler TJ Biochemistry; 1989 Apr; 28(8):3413-20. PubMed ID: 2742844 [TBL] [Abstract][Full Text] [Related]
55. The interaction of Ca2+/Mg2+ ATPase activator protein and Ca2+ with human erythrocyte membranes. Hanahan DJ; Taverna RD; Flynn DD; Ekholm JE Biochem Biophys Res Commun; 1978 Oct; 84(4):1009-15. PubMed ID: 153141 [No Abstract] [Full Text] [Related]
56. [Effects of low concentrations of calcium and magnesium in the drinking water on transport of univalent cations and calcium in erythrocytes of normotensive rats]. Kuznetsov SR; Orlov SN; Churina SK Biull Eksp Biol Med; 1991 May; 111(5):471-3. PubMed ID: 1831677 [No Abstract] [Full Text] [Related]
57. The interaction of potassium ions and ATP on the sodium pump of resealed red cell ghosts. Eisner DA; Richards DE J Physiol; 1981; 319():403-18. PubMed ID: 7320919 [TBL] [Abstract][Full Text] [Related]
58. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate. Carruthers A Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945 [TBL] [Abstract][Full Text] [Related]
59. [Urate transport in erythrocytes: possible role of a transport membrane]. Lucas-Heron B C R Seances Soc Biol Fil; 1978; 172(4):759-83. PubMed ID: 154956 [TBL] [Abstract][Full Text] [Related]
60. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Sarkadi B; Szász I; Gerlóczy A; Gárdos G Biochim Biophys Acta; 1977 Jan; 464(1):93-107. PubMed ID: 137747 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]