These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 6584513)

  • 1. Characterization of rabbit neutrophil membrane proteins. A 140K major membrane protein is the predominant Con A-binding protein.
    Williams DJ; Becker EL
    J Leukoc Biol; 1984 Jan; 35(1):71-90. PubMed ID: 6584513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of surface proteins of rabbit polymorphonuclear leukocytes during phagocytosis. I. Identification of surface proteins.
    Willinger M; Frankel FR
    J Cell Biol; 1979 Jul; 82(1):32-44. PubMed ID: 479301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane linkage between surface glycoproteins and components of the cytoplasm in neutrophil leukocytes.
    Sheterline P; Hopkins CR
    J Cell Biol; 1981 Sep; 90(3):743-54. PubMed ID: 7197281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate.
    Gardner JP; Melnick DA; Malech HL
    J Immunol; 1986 Feb; 136(4):1400-5. PubMed ID: 3511145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation.
    Brown WJ; Shannon WA; Snell WJ
    J Cell Biol; 1983 Apr; 96(4):1040-6. PubMed ID: 6833389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules.
    Stevenson KB; Nauseef WM; Clark RA
    J Immunol; 1987 Dec; 139(11):3759-63. PubMed ID: 3316388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and cytoskeletal association of a major cell surface glycoprotein, GP 140, in human neutrophils.
    Suchard SJ; Boxer LA
    J Clin Invest; 1989 Aug; 84(2):484-92. PubMed ID: 2527250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial characterization of the vitamin D binding protein (Gc-globulin) binding site on the neutrophil plasma membrane: evidence for a chondroitin sulfate proteoglycan.
    DiMartino SJ; Kew RR
    J Immunol; 1999 Aug; 163(4):2135-42. PubMed ID: 10438954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins.
    Jesaitis AJ; Bokoch GM; Tolley JO; Allen RA
    J Cell Biol; 1988 Sep; 107(3):921-8. PubMed ID: 3138250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the adhesive protein complex (LFA-1/Mac-1/p150,95) to concanavalin A.
    Schmalstieg FC; Rudloff HE; Anderson DC
    J Leukoc Biol; 1986 Feb; 39(2):193-203. PubMed ID: 3510266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of human neutrophil plasma membranes employing neutrophil cytoplasts and changes in the cell-surface proteins upon cell activation.
    Mollinedo F
    Biochim Biophys Acta; 1986 Sep; 861(1):33-43. PubMed ID: 3019398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of monoclonal antibodies against a cell surface concanavalin A binding glycoprotein.
    Starling JJ; Simrell CR; Klein PA; Noonan KD
    J Supramol Struct; 1979; 11(4):563-77. PubMed ID: 544930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton.
    Painter RG; Ginsberg M
    J Cell Biol; 1982 Feb; 92(2):565-73. PubMed ID: 6460776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presence of stomatin in detergent-insoluble domains of neutrophil granule membranes.
    Feuk-Lagerstedt E; Samuelsson M; Mosgoeller W; Movitz C; Rosqvist A; Bergström J; Larsson T; Steiner M; Prohaska R; Karlsson A
    J Leukoc Biol; 2002 Nov; 72(5):970-7. PubMed ID: 12429719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. I. Isolation and characterization of membrane and content subfractions.
    Brown WJ; Shannon WA; Snell WJ
    J Cell Biol; 1983 Apr; 96(4):1030-9. PubMed ID: 6833388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule-membrane interactions in cilia. I. Isolation and characterization of ciliary membranes from Tetrahymena pyriformis.
    Dentler WL
    J Cell Biol; 1980 Feb; 84(2):364-80. PubMed ID: 6445909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the plasma membrane bound GTPase from rabbit neutrophils. I. Evidence for an Ni-like protein coupled to the formyl peptide, C5a, and leukotriene B4 chemotaxis receptors.
    Feltner DE; Smith RH; Marasco WA
    J Immunol; 1986 Sep; 137(6):1961-70. PubMed ID: 3018082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct evidence for the interaction of platelet surface membrane proteins GPIIb and III with cytoskeletal components: protein crosslinking studies.
    Painter RG; Gaarde W; Ginsberg MH
    J Cell Biochem; 1985; 27(3):277-90. PubMed ID: 3157694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of human platelet membrane fibrinogen receptors by immunochemical techniques.
    Kornecki E; Tuszynski GP; Niewiarowski S
    Haematologia (Budap); 1984; 17(3):387-98. PubMed ID: 6100105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional molecular complexes of human N-formyl chemoattractant receptors and actin.
    Jesaitis AJ; Erickson RW; Klotz KN; Bommakanti RK; Siemsen DW
    J Immunol; 1993 Nov; 151(10):5653-65. PubMed ID: 8228254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.