BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 658470)

  • 21. Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise.
    Sahlin K; Broberg S; Ren JM
    Acta Physiol Scand; 1989 Jun; 136(2):193-8. PubMed ID: 2782092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced activity of the purine nucleotide cycle of the exercising muscle in patients with hyperthyroidism.
    Fukui H; Taniguchi S; Ueta Y; Yoshida A; Ohtahara A; Hisatome I; Shigemasa C
    J Clin Endocrinol Metab; 2001 May; 86(5):2205-10. PubMed ID: 11344228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ammonia and amino acid metabolism in human skeletal muscle during exercise.
    Graham TE; MacLean DA
    Can J Physiol Pharmacol; 1992 Jan; 70(1):132-41. PubMed ID: 1581847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-ischaemic synchronous purine nucleotide oscillations in perfused rat heart.
    Mowbray J; Perrett D; Bates DJ
    Int J Biochem; 1984; 16(8):889-94. PubMed ID: 6088321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonia production in muscle and other tissues: the purine nucleotide cycle.
    Lowenstein JM
    Physiol Rev; 1972 Apr; 52(2):382-414. PubMed ID: 4260884
    [No Abstract]   [Full Text] [Related]  

  • 26. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise.
    Broberg S; Sahlin K
    J Appl Physiol (1985); 1989 Jul; 67(1):116-22. PubMed ID: 2759935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The purine nucleotide cycle activity in renal cortex and medulla.
    Stepiński J; Bizon D; Piec G; Angielski S
    Am J Kidney Dis; 1989 Oct; 14(4):307-9. PubMed ID: 2801700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man.
    Norman B; Sollevi A; Jansson E
    Acta Physiol Scand; 1988 May; 133(1):97-100. PubMed ID: 3227908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The purine nucleotide profile in mouse, chicken and human dystrophic muscle: an abnormal ratio of inosine plus adenine nucleotides to guanine nucleotides.
    Shuttlewood RJ; Griffiths JR
    Clin Sci (Lond); 1982 Jan; 62(1):113-5. PubMed ID: 7056028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle.
    Sahlin K; Gorski J; Edström L
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle.
    Tornheim K; Lowenstein JM
    J Biol Chem; 1972 Jan; 247(1):162-9. PubMed ID: 5017762
    [No Abstract]   [Full Text] [Related]  

  • 32. Differences in ammonia and adenylate metabolism in contracting fast and slow muscle.
    Meyer RA; Terjung RL
    Am J Physiol; 1979 Sep; 237(3):C111-8. PubMed ID: 474740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal muscle protein and amino acid metabolism in experimental chronic uremia in the rat: accelerated alanine and glutamine formation and release.
    Garber AJ
    J Clin Invest; 1978 Sep; 62(3):623-32. PubMed ID: 690188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic and circulatory limitations to muscular performance at the organ level.
    Terjung RL; Dudley GA; Meyer RA
    J Exp Biol; 1985 Mar; 115():307-18. PubMed ID: 4031772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The purine nucleotide cycle. Control of phosphofructokinase and glycolytic oscillations in muscle extracts.
    Tornheim K; Lowenstein JM
    J Biol Chem; 1975 Aug; 250(16):6304-14. PubMed ID: 169235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IMP response: an indicator of metabolic stress in working muscle.
    Heller SL; Choksi R; Brooke MH
    Muscle Nerve; 1986; 9(6):515-8. PubMed ID: 3736584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exercise-induced hyperammonemia: peripheral and central effects.
    Banister EW; Cameron BJ
    Int J Sports Med; 1990 May; 11 Suppl 2():S129-42. PubMed ID: 2193891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency.
    Sabina RL; Swain JL; Patten BM; Ashizawa T; O'Brien WE; Holmes EW
    J Clin Invest; 1980 Dec; 66(6):1419-23. PubMed ID: 7440723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of sprint training on human skeletal muscle purine nucleotide metabolism.
    Stathis CG; Febbraio MA; Carey MF; Snow RJ
    J Appl Physiol (1985); 1994 Apr; 76(4):1802-9. PubMed ID: 8045862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle adenine nucleotide metabolism during and in recovery from maximal exercise in humans.
    Zhao S; Snow RJ; Stathis CG; Febbraio MA; Carey MF
    J Appl Physiol (1985); 2000 May; 88(5):1513-9. PubMed ID: 10797106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.