These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6587352)

  • 1. A simple topological method for describing stereoisomers of DNA catenanes and knots.
    White JH; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3322-6. PubMed ID: 6587352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Description of the topological entanglement of DNA catenanes and knots by a powerful method involving strand passage and recombination.
    White JH; Millett KC; Cozzarelli NR
    J Mol Biol; 1987 Oct; 197(3):585-603. PubMed ID: 3441012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation.
    Rawdon EJ; Dorier J; Racko D; Millett KC; Stasiak A
    Nucleic Acids Res; 2016 Jun; 44(10):4528-38. PubMed ID: 27106058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sedimentation and electrophoretic migration of DNA knots and catenanes.
    Vologodskii AV; Crisona NJ; Laurie B; Pieranski P; Katritch V; Dubochet J; Stasiak A
    J Mol Biol; 1998 Apr; 278(1):1-3. PubMed ID: 9571029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometry and physics of catenanes applied to the study of DNA replication.
    Laurie B; Katritch V; Sogo J; Koller T; Dubochet J; Stasiak A
    Biophys J; 1998 Jun; 74(6):2815-22. PubMed ID: 9635735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting knot or catenane type of site-specific recombination products.
    Buck D; Flapan E
    J Mol Biol; 2007 Dec; 374(5):1186-99. PubMed ID: 17996894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the absolute handedness of knots and catenanes of DNA.
    Krasnow MA; Stasiak A; Spengler SJ; Dean F; Koller T; Cozzarelli NR
    Nature; 1983 Aug 11-17; 304(5926):559-60. PubMed ID: 6308470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoselectivity of DNA catenane fusion by resolvase.
    Stark WM; Parker CN; Halford SE; Boocock MR
    Nature; 1994 Mar; 368(6466):76-8. PubMed ID: 8107889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the structure of dimeric DNA catenanes by electron microscopy.
    Levene SD; Donahue C; Boles TC; Cozzarelli NR
    Biophys J; 1995 Sep; 69(3):1036-45. PubMed ID: 8519958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo analysis of the conformation of DNA catenanes.
    Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting knot and catenane type of products of site-specific recombination on twist knot substrates.
    Valencia K; Buck D
    J Mol Biol; 2011 Aug; 411(2):350-67. PubMed ID: 21679716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric arrangements of Tn3 resolvase sites.
    Benjamin HW; Cozzarelli NR
    J Biol Chem; 1990 Apr; 265(11):6441-7. PubMed ID: 2156851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology of Xer recombination on catenanes produced by lambda integrase.
    Bath J; Sherratt DJ; Colloms SD
    J Mol Biol; 1999 Jun; 289(4):873-83. PubMed ID: 10369768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopore translocation of topologically linked DNA catenanes.
    Rheaume SN; Klotz AR
    Phys Rev E; 2023 Feb; 107(2-1):024504. PubMed ID: 36932513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes.
    Schvartzman JB; Hernández P; Krimer DB; Dorier J; Stasiak A
    Nucleic Acids Res; 2019 Aug; 47(14):7182-7198. PubMed ID: 31276584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two convergent pathways of DNA knotting in replicating DNA molecules as revealed by θ-curve analysis.
    O'Donnol D; Stasiak A; Buck D
    Nucleic Acids Res; 2018 Sep; 46(17):9181-9188. PubMed ID: 29982678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane.
    Li Q; Li J; Cui Y; Liu S; An R; Liang X; Komiyama M
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30189687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules.
    Cebrián J; Kadomatsu-Hermosa MJ; Castán A; Martínez V; Parra C; Fernández-Nestosa MJ; Schaerer C; Martínez-Robles ML; Hernández P; Krimer DB; Stasiak A; Schvartzman JB
    Nucleic Acids Res; 2015 Feb; 43(4):e24. PubMed ID: 25414338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of DNA catenanes.
    Vologodskii A; Rybenkov VV
    Phys Chem Chem Phys; 2009 Dec; 11(45):10543-52. PubMed ID: 20145800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the stereostructure of the product of Tn3 resolvase by a general method.
    Wasserman SA; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1079-83. PubMed ID: 2983329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.