These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 6587396)

  • 41. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis.
    Quinn MT; Parthasarathy S; Fong LG; Steinberg D
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2995-8. PubMed ID: 3472245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generation of hydroxyl radical from lipid hydroperoxides contained in oxidatively modified low-density lipoprotein.
    Yagi K; Komura S; Ishida N; Nagata N; Kohno M; Ohishi N
    Biochem Biophys Res Commun; 1993 Jan; 190(2):386-90. PubMed ID: 8381274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study of binding and degradation by macrophages and endothelial cells.
    Zhou M; Chen Y; Liu S; Ding Z; Pang Z; Wan J
    Br J Biomed Sci; 1998 Sep; 55(3):192-8. PubMed ID: 10367404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detrimental vascular effects of lysophosphatidylcholine is limited by other phospholipid components of low-density lipoprotein.
    Leung SW; Huang M; Man RY
    Mol Cell Biochem; 2003 Aug; 250(1-2):159-66. PubMed ID: 12962154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Free radical modification of low-density lipoprotein: mechanisms and biological consequences.
    Heinecke JW
    Free Radic Biol Med; 1987; 3(1):65-73. PubMed ID: 3040538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellular oxidative modification of low density lipoprotein does not require lipoxygenases.
    Sparrow CP; Olszewski J
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):128-31. PubMed ID: 1729678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein.
    Quinn MT; Parthasarathy S; Steinberg D
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5949-53. PubMed ID: 3862109
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium antagonists prevent monocyte and endothelial cell-induced modification of low density lipoproteins.
    Breugnot C; Mazière C; Auclair M; Mora L; Ronveaux MF; Salmon S; Santus R; Morlière P; Lenaers A; Mazière JC
    Free Radic Res Commun; 1991; 15(2):91-100. PubMed ID: 1756990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tumor necrosis factor enhances low density lipoprotein oxidative modification by monocytes and endothelial cells.
    Maziere C; Auclair M; Maziere JC
    FEBS Lett; 1994 Jan; 338(1):43-6. PubMed ID: 8307154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor.
    Parthasarathy S
    Biochim Biophys Acta; 1987 Feb; 917(2):337-40. PubMed ID: 3801507
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of LDL degradation in cultured human fibroblasts induced by endothelial cell-conditioned medium.
    Cornicelli JA; Witte LD; Goodman DS
    Arteriosclerosis; 1983; 3(6):560-7. PubMed ID: 6651611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Active oxygen species and lysophosphatidylcholine are involved in oxidized low density lipoprotein activation of smooth muscle cell DNA synthesis.
    Stiko A; Regnström J; Shah PK; Cercek B; Nilsson J
    Arterioscler Thromb Vasc Biol; 1996 Feb; 16(2):194-200. PubMed ID: 8620332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased uptake of monocyte-treated low density lipoproteins by aortic endothelium in vivo.
    Görög P; Kakkar VV
    Atherosclerosis; 1987 May; 65(1-2):99-107. PubMed ID: 3038135
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolism of low density lipoprotein by bovine endothelial cells as a function of cell density.
    Kenagy R; Bierman EL; Schwartz S; Albers JJ
    Arteriosclerosis; 1984; 4(4):365-71. PubMed ID: 6087777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic modification of plasma low density lipoproteins in rabbits: a potential treatment for hypercholesterolemia.
    Labeque R; Mullon CJ; Ferreira JP; Lees RS; Langer R
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3476-80. PubMed ID: 8475095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uptake and degradation of low density lipoproteins (LDL) by confluent, contact-inhibited bovine and human endothelial cells exposed to physiological concentrations of LDL.
    Coetzee GA; Stein O; Stein Y
    Atherosclerosis; 1979 Aug; 33(4):425-31. PubMed ID: 228681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NMR analysis of low-density lipoprotein oxidatively-modified in vitro.
    Barenghi L; Bradamante S; Giudici GA; Vergani C
    Free Radic Res Commun; 1990; 8(3):175-83. PubMed ID: 2328928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid.
    Morel DW; Hessler JR; Chisolm GM
    J Lipid Res; 1983 Aug; 24(8):1070-6. PubMed ID: 6415194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanisms of lysophosphatidylcholine in the development of diseases.
    Liu P; Zhu W; Chen C; Yan B; Zhu L; Chen X; Peng C
    Life Sci; 2020 Apr; 247():117443. PubMed ID: 32084434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo and in vitro catabolism of native and biologically modified LDL.
    Nagelkerke JF; Havekes L; van Hinsbergh VW; van Berkel TJ
    FEBS Lett; 1984 Jun; 171(1):149-53. PubMed ID: 6723973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.