These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 6587396)

  • 61. In vivo catabolism of biologically modified LDL.
    Nagelkerke JF; Havekes L; van Hinsbergh VW; van Berkel TJ
    Arteriosclerosis; 1984; 4(3):256-64. PubMed ID: 6712538
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Differences in the uptake of modified low density lipoproteins by tissue cultured endothelial cells.
    Gaffney J; West D; Arnold F; Sattar A; Kumar S
    J Cell Sci; 1985 Nov; 79():317-25. PubMed ID: 3833867
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of clonal senescence on low density lipoprotein-receptor activity of bovine arterial endothelial cells.
    Bierman EL; Schwartz SM
    In Vitro; 1984 Oct; 20(10):809-14. PubMed ID: 6519666
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein.
    Greco G; Balogh G; Brunelli R; Costa G; De Spirito M; Lenzi L; Mei G; Ursini F; Parasassi T
    Biophys J; 2009 Jul; 97(2):628-35. PubMed ID: 19619478
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Markers for low-density lipoprotein oxidation.
    Aviram M; Vaya J
    Methods Enzymol; 2001; 335():244-56. PubMed ID: 11400372
    [No Abstract]   [Full Text] [Related]  

  • 66. Metabolism of non-enzymic glycosylated low density lipoprotein by mini pig aortic endothelial cells.
    Bauer PI; Büki KG; Csonka E; Koch SA; Horváth I
    Acta Biochim Biophys Hung; 1986; 21(3):229-36. PubMed ID: 3099524
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of oxidatively modified LDL in atherosclerosis.
    Steinbrecher UP; Zhang HF; Lougheed M
    Free Radic Biol Med; 1990; 9(2):155-68. PubMed ID: 2227530
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Endothelial degradation of extracellular lyso-phosphatidylcholine.
    Tøsti E; Dahl L; Endresen MJ; Henriksen T
    Scand J Clin Lab Invest; 1999 Jul; 59(4):249-57. PubMed ID: 10463463
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A method for thermal generation of aryloxyl radicals at ambient temperatures: application to low-density lipoprotein (LDL) oxidation.
    Paul T; Ingold KU
    Angew Chem Int Ed Engl; 2002 Mar; 41(5):804-6. PubMed ID: 12491342
    [No Abstract]   [Full Text] [Related]  

  • 70. Critical insights into cardiovascular disease from basic research on the oxidation of phospholipids: the γ-hydroxyalkenal phospholipid hypothesis.
    Salomon RG; Gu X
    Chem Res Toxicol; 2011 Nov; 24(11):1791-802. PubMed ID: 21870852
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Atherosclerosis--an inflammatory disease.
    Ross R
    N Engl J Med; 1999 Jan; 340(2):115-26. PubMed ID: 9887164
    [No Abstract]   [Full Text] [Related]  

  • 72. Correlation Between Lipoprotein-Related Phospholipase A2 and Metabolic Syndrome.
    Wang KY; Chen YC; Chen JY; Loke SS; Yeh WC; Li WC
    Int J Gen Med; 2023; 16():6041-6049. PubMed ID: 38148886
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease.
    Zhang Z; Li L; Shi H; Chen B; Li X; Zhang Y; Liu F; Wei W; Zhou Y; Liu K; Xia W; Gu X; Huang J; Tu S; Yin C; Shao A; Jiang L
    Medicina (Kaunas); 2023 Aug; 59(8):. PubMed ID: 37629751
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New Therapeutic Approaches to the Treatment of Dyslipidemia 1: ApoC-III and ANGPTL3.
    Kim JY; Kim NH
    J Lipid Atheroscler; 2023 Jan; 12(1):23-36. PubMed ID: 36761060
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hepatic artery disorders associated with alcoholism.
    Petroianu A; Haddad CMSLD; Pereira GA; Vidigal PVT
    J Int Med Res; 2023 Feb; 51(2):3000605231153547. PubMed ID: 36748484
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The ethanol extract of
    Tang L; Kuang C; Shan D; Shi M; Li J; Qiu L; Yu J
    Front Cardiovasc Med; 2022; 9():1023438. PubMed ID: 36505350
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders.
    Tian Z; Feng B; Wang XQ; Tian J
    Front Mol Neurosci; 2022; 15():1030639. PubMed ID: 36438186
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bioenergetic and vascular predictors of potential super-ager and cognitive decline trajectories-a UK Biobank Random Forest classification study.
    Mohammadiarvejeh P; Klinedinst BS; Wang Q; Li T; Larsen B; Pollpeter A; Moody SN; Willette SA; Mochel JP; Allenspach K; Hu G; Willette AA
    Geroscience; 2023 Feb; 45(1):491-505. PubMed ID: 36104610
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dicarbonyl-Dependent Modification of LDL as a Key Factor of Endothelial Dysfunction and Atherosclerotic Vascular Wall Damage.
    Lankin VZ; Tikhaze AK; Melkumyants AM
    Antioxidants (Basel); 2022 Aug; 11(8):. PubMed ID: 36009284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders.
    Kleiboeker B; Lodhi IJ
    Mol Metab; 2022 Nov; 65():101577. PubMed ID: 35988716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.