These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6588863)

  • 41. Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles.
    Humphrey DR; Reed DJ
    Adv Neurol; 1983; 39():347-72. PubMed ID: 6419553
    [No Abstract]   [Full Text] [Related]  

  • 42. A functional analysis of cortical motor sensory convergence areas in the monkey.
    Schwartzman RJ; Gran B; Marcos J
    Trans Am Neurol Assoc; 1975; 100():114-7. PubMed ID: 818764
    [No Abstract]   [Full Text] [Related]  

  • 43. Measuring cortical activity - we will only detect what we are looking for.
    Jacobs J
    Clin Neurophysiol; 2010 Mar; 121(3):268-9. PubMed ID: 20005165
    [No Abstract]   [Full Text] [Related]  

  • 44. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells.
    Fetz EE; Cheney PD
    J Neurophysiol; 1980 Oct; 44(4):751-72. PubMed ID: 6253604
    [No Abstract]   [Full Text] [Related]  

  • 45. Posterior parietal negativity preceding self-paced praxis movements.
    Wheaton LA; Yakota S; Hallett M
    Exp Brain Res; 2005 Jun; 163(4):535-9. PubMed ID: 15883800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evoked neuromagnetic fields.
    Kaufman L; Okada Y; Tripp J; Weinberg H
    Ann N Y Acad Sci; 1984; 425():722-42. PubMed ID: 6588892
    [No Abstract]   [Full Text] [Related]  

  • 47. Functional classes of primate corticomotoneuronal cells and their relation to active force.
    Cheney PD; Fetz EE
    J Neurophysiol; 1980 Oct; 44(4):773-91. PubMed ID: 6253605
    [No Abstract]   [Full Text] [Related]  

  • 48. Preparation to respond as manifested by movement-related brain potentials.
    Kutas M; Donchin E
    Brain Res; 1980 Nov; 202(1):95-115. PubMed ID: 7427748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The serial order of self-paced movement in terms of brain macropotentials in man [proceedings].
    Papakostopoulos D
    J Physiol; 1978 Jul; 280():70P-71P. PubMed ID: 690934
    [No Abstract]   [Full Text] [Related]  

  • 50. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation.
    Bütefisch CM; Khurana V; Kopylev L; Cohen LG
    J Neurophysiol; 2004 May; 91(5):2110-6. PubMed ID: 14711974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Volitionally controlled single motor unit discharges and cortical motor potentials in human subjects.
    Tanji J; Kato M
    Brain Res; 1971 Jun; 29(2):343-6. PubMed ID: 5128693
    [No Abstract]   [Full Text] [Related]  

  • 52. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study.
    Fuggetta G; Fiaschi A; Manganotti P
    Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans.
    Rossi S; Pasqualetti P; Rossini PM; Feige B; Ulivelli M; Glocker FX; Battistini N; Lucking CH; Kristeva-Feige R
    Cereb Cortex; 2000 Aug; 10(8):802-8. PubMed ID: 10920051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Electrical activity of the brain of children with cerebral palsy and the formation of motor skills using methods of functional bioregulation].
    Bogdanov OV; Varman BG; Movsisiants SA; Bekshaev SS
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1986; 86(10):1496-502. PubMed ID: 3811703
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cortical drive to human respiratory muscles in the awake state assessed by premotor cerebral potentials.
    Macefield G; Gandevia SC
    J Physiol; 1991 Aug; 439():545-58. PubMed ID: 1895244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asymmetry of front duration of the EEG-waves during performances of motor tasks in normal 3- and 6-year old children.
    Vladimirova G
    Agressologie; 1973; 14():73-9. PubMed ID: 4753629
    [No Abstract]   [Full Text] [Related]  

  • 57. Cortical control of motor sequences.
    Ashe J; Lungu OV; Basford AT; Lu X
    Curr Opin Neurobiol; 2006 Apr; 16(2):213-21. PubMed ID: 16563734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cortical cell discharge patterns in anticipation of a trained movement.
    Schmidt EM; Jost RG; Davis KK
    Brain Res; 1974 Jul; 75(2):309-11. PubMed ID: 4210287
    [No Abstract]   [Full Text] [Related]  

  • 59. Paradoxical lateralization of brain potentials during imagined foot movements.
    Osman A; Müller KM; Syre P; Russ B
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):727-31. PubMed ID: 15894471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Premovement facilitation of corticospinal excitability before simple and sequential movement.
    Hiraoka K; Kamata N; Matsugi A; Iwata A
    Percept Mot Skills; 2010 Aug; 111(1):129-40. PubMed ID: 21058594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.