BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6589598)

  • 21. [Interaction of a peptide inhibitor with two forms of monomeric fibrin differing in the degree of activation].
    Chiriat'ev EA; Leonova OP; Byshevskiĭ ASh
    Ukr Biokhim Zh (1978); 1989; 61(1):3-9. PubMed ID: 2741239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discrepant elimination of fibrin des-AA and des-AABB in man.
    Nilsen DW; Brosstad F
    Thromb Haemost; 1986 Jun; 55(3):439. PubMed ID: 3750275
    [No Abstract]   [Full Text] [Related]  

  • 23. Endothelial cell responses to fibrin mediated by FPB cleavage and the amino terminus of the beta chain.
    Francis CW; Bunce LA; Sporn LA
    Blood Cells; 1993; 19(2):291-306; discussion 306-7. PubMed ID: 8312565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibrin(ogen) peptides in early breast cancer.
    Mannucci PM; Cugno M; Mameli G; Marongiu F; Bianchi Bonomi A
    Thromb Haemost; 1989 Sep; 62(2):819. PubMed ID: 2814934
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of fibrinogen-binding tetrapeptides on mechanical properties of fine fibrin clots.
    Bale MD; Müller MF; Ferry JD
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1410-3. PubMed ID: 3856269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibrinopeptide A increases after chorionic villus sampling.
    Al-Gailani F; Elias S; Simpson JL; Green D
    Prenat Diagn; 1987 Oct; 7(8):557-60. PubMed ID: 3684963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Domains in fibrinogen of importance for the fibrinogen-fibrin formation.
    Hessel B; Kudryk B; Bombäck B
    Bibl Haematol; 1977; 44():117-22. PubMed ID: 617775
    [No Abstract]   [Full Text] [Related]  

  • 28. Evidence for four different polymerization sites involved in human fibrin formation.
    Olexa SA; Budzynski AZ
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1374-8. PubMed ID: 6929491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Action of proteolytic enzymes on fibrinogen].
    Jamet M; Levy G
    Ann Anesthesiol Fr; 1978; 19(8):687-91. PubMed ID: 31111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proceedings: Pathobiology of human fibrinogen. Binding site for staphylococci on Aalpha and Bbeta chains of fibrinogen molecule.
    Hawiger J; Hammond DK; Timmons S
    Thromb Diath Haemorrh; 1975 Sep; 34(1):324-5. PubMed ID: 1188738
    [No Abstract]   [Full Text] [Related]  

  • 31. Kinetic characterization of a saturable pathway for rapid clearance of circulating fibrin monomer.
    Dardik BN; Shainoff JR
    Blood; 1985 Mar; 65(3):680-8. PubMed ID: 3971045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots.
    Weisel JW; Veklich Y; Gorkun O
    J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Release of fibrinopeptides by the slow and fast forms of thrombin.
    Vindigni A; Di Cera E
    Biochemistry; 1996 Apr; 35(14):4417-26. PubMed ID: 8605191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fibrinogen Milano XIII (Aalpha 19 Arg-->Gly): a dysfunctional variant with an amino acid substitution in the N-terminal polymerization site.
    Bolliger-Stucki B; Bucciarelli P; Lämmle B; Furlan M
    Thromb Res; 1999 Dec; 96(5):399-405. PubMed ID: 10605955
    [No Abstract]   [Full Text] [Related]  

  • 35. Fibrinogen Matsumoto V: a variant with Aalpha19 Arg-->Gly (AGG-->GGG). Comparison between fibrin polymerization stimulated by thrombin or reptilase and fibrin monomer polymerization.
    Tanaka H; Terasawa F; Ito T; Tokunaga S; Ishida F; Kitano K; Kiyosawa K; Okumura N
    Thromb Haemost; 2001 Jan; 85(1):108-13. PubMed ID: 11204560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium-binding site beta 2, adjacent to the "b" polymerization site, modulates lateral aggregation of protofibrils during fibrin polymerization.
    Kostelansky MS; Lounes KC; Ping LF; Dickerson SK; Gorkun OV; Lord ST
    Biochemistry; 2004 Mar; 43(9):2475-83. PubMed ID: 14992585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased plasmin resistance by clots of a homophenotypic Aalpha R 16H fibrinogen (Kingsport, slower fibrinopeptide A than fibrinopeptide B release).
    Galanakis DK; Neerman-Arbez M; Kudryk B; Henschen A
    Blood Coagul Fibrinolysis; 2010 Mar; 21(2):135-9. PubMed ID: 20019599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hybrid peptide analogs to receptor recognition domains on alpha- and gamma-chains of human fibrinogen on fibrinogen binding to platelets.
    Mohri H; Ohkubo T
    Thromb Haemost; 1993 May; 69(5):490-5. PubMed ID: 8322271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibrinogen-induced erythrocyte aggregation: erythrocyte-binding site in the fibrinogen molecule.
    Maeda N; Seike M; Kume S; Takaku T; Shiga T
    Biochim Biophys Acta; 1987 Nov; 904(1):81-91. PubMed ID: 2959322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proflavin binding within the fibrinopeptide groove adjacent to the catalytic site of human alpha-thrombin.
    Sonder SA; Fenton JW
    Biochemistry; 1984 Apr; 23(8):1818-23. PubMed ID: 6722124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.