These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 6589633)
1. Characterization of a cloned DNA sequence that is present at centromeres of all human autosomes and the X chromosome and shows polymorphic variation. Jabs EW; Wolf SF; Migeon BR Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4884-8. PubMed ID: 6589633 [TBL] [Abstract][Full Text] [Related]
2. Characterization of human centromeric regions of specific chromosomes by means of alphoid DNA sequences. Jabs EW; Persico MG Am J Hum Genet; 1987 Sep; 41(3):374-90. PubMed ID: 3631075 [TBL] [Abstract][Full Text] [Related]
3. Linkage studies of polymorphic, repeated DNA sequences in centromeric regions of human chromosomes. Jabs EW; Meyers DA; Bias WB Am J Hum Genet; 1986 Mar; 38(3):297-308. PubMed ID: 3006481 [TBL] [Abstract][Full Text] [Related]
4. Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats. Jabs EW; Goble CA; Cutting GR Proc Natl Acad Sci U S A; 1989 Jan; 86(1):202-6. PubMed ID: 2911568 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Yang TP; Hansen SK; Oishi KK; Ryder OA; Hamkalo BA Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6593-7. PubMed ID: 6959140 [TBL] [Abstract][Full Text] [Related]
6. Detection of restriction fragment length polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Willard HF; Waye JS; Skolnick MH; Schwartz CE; Powers VE; England SB Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5611-5. PubMed ID: 3016709 [TBL] [Abstract][Full Text] [Related]
7. [Cloned fragment of human repetitive DNA specific for the centromere heterochromatin of chromosome 3]. Iurov IuB; Iakovlev AG; Zaĭtsev IZ; Mitkevich SP; Aleksandrov IA Mol Gen Mikrobiol Virusol; 1986 Jul; (7):19-23. PubMed ID: 3785256 [No Abstract] [Full Text] [Related]
8. Sequence heterogeneity within the human alphoid repetitive DNA family. Devilee P; Slagboom P; Cornelisse CJ; Pearson PL Nucleic Acids Res; 1986 Mar; 14(5):2059-73. PubMed ID: 3960717 [TBL] [Abstract][Full Text] [Related]
9. [Cloned fragment of human alphoid DNA--a molecular marker of the pericentromeric region of chromosome 18]. Aleksandrov IA; Iurov IuB; Mitkevich SP; Gindilis VM Genetika; 1986 May; 22(5):868-76. PubMed ID: 3460927 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of a major tandem repeat family from the human X chromosome. Willard HF; Smith KD; Sutherland J Nucleic Acids Res; 1983 Apr; 11(7):2017-33. PubMed ID: 6300789 [TBL] [Abstract][Full Text] [Related]
11. Molecular hybridization to meiotic chromosomes in man reveals sequence arrangement on the no. 9 chromosome and provides clues to the nature of "parameres". Mitchell AR; Ambros P; McBeath S; Chandley AC Cytogenet Cell Genet; 1986; 41(2):89-95. PubMed ID: 3456888 [TBL] [Abstract][Full Text] [Related]
12. Chromosome size-correlated and chromosome size-uncorrelated homogenization of centromeric repetitive sequences in New World quails. Ishishita S; Tsuruta Y; Uno Y; Nakamura A; Nishida C; Griffin DK; Tsudzuki M; Ono T; Matsuda Y Chromosome Res; 2014 Apr; 22(1):15-34. PubMed ID: 24532185 [TBL] [Abstract][Full Text] [Related]
13. Single-copy sequence hybridizes to polymorphic and homologous loci on human X and Y chromosomes. Page D; de Martinville B; Barker D; Wyman A; White R; Francke U; Botstein D Proc Natl Acad Sci U S A; 1982 Sep; 79(17):5352-6. PubMed ID: 6291041 [TBL] [Abstract][Full Text] [Related]
14. A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes. Mitchell AR; Gosden JR; Miller DA Chromosoma; 1985; 92(5):369-77. PubMed ID: 2996845 [TBL] [Abstract][Full Text] [Related]
15. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Kishii M; Nagaki K; Tsujimoto H Chromosome Res; 2001; 9(5):417-28. PubMed ID: 11448043 [TBL] [Abstract][Full Text] [Related]
16. Chromosome-specific organization of human alpha satellite DNA. Willard HF Am J Hum Genet; 1985 May; 37(3):524-32. PubMed ID: 2988334 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the A and B chromosomes of the Korean field mouse (Apodemus peninsulae, Muridae, Rodentia). Matsubara K; Yamada K; Umemoto S; Tsuchiya K; Ikeda N; Nishida C; Chijiwa T; Moriwaki K; Matsuda Y Chromosome Res; 2008; 16(7):1013-26. PubMed ID: 18949567 [TBL] [Abstract][Full Text] [Related]
18. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite. Durfy SJ; Willard HF J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932 [TBL] [Abstract][Full Text] [Related]
19. Chromosome-specific alpha satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. Waye JS; Durfy SJ; Pinkel D; Kenwrick S; Patterson M; Davies KE; Willard HF Genomics; 1987 Sep; 1(1):43-51. PubMed ID: 2889661 [TBL] [Abstract][Full Text] [Related]
20. Highly conserved repetitive DNA sequences are present at human centromeres. Grady DL; Ratliff RL; Robinson DL; McCanlies EC; Meyne J; Moyzis RK Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1695-9. PubMed ID: 1542662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]