These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6591961)

  • 1. Some mathematical and numerical methods for determination of behaviour law of blood.
    Maurice G; Lucius M; Stoltz JF
    Biorheology Suppl; 1984; 1():107-10. PubMed ID: 6591961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three--dimensional dyadic Walburn-Schneck constitutive equation for blood.
    Easthope P
    Biorheology; 1989; 26(1):37-44. PubMed ID: 2804273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration.
    Chaturani P; Palanisamy V
    Biorheology; 1990; 27(5):747-58. PubMed ID: 2271765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.
    Ali N; Asghar Z; Anwar Bég O; Sajid M
    J Theor Biol; 2016 May; 397():22-32. PubMed ID: 26903204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of the Taylor-Couette stability problem to validate a constitutive equation for blood.
    Deutsch S; Phillips WM
    Biorheology; 1977; 14(5-6):253-66. PubMed ID: 610779
    [No Abstract]   [Full Text] [Related]  

  • 7. Leukocyte deformability: finite element modeling of large viscoelastic deformation.
    Dong C; Skalak R
    J Theor Biol; 1992 Sep; 158(2):173-93. PubMed ID: 1474842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of peristaltic transport of a non-Newtonian fluid.
    Mernone A; Mazumdar J
    Australas Phys Eng Sci Med; 1998 Sep; 21(3):126-40. PubMed ID: 9848947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheogoniometric studies of whole human blood at shear rates down to 0.0009 sec-1. II. Mathematical interpretation.
    Huang CR; King RG; Copley AL
    Biorheology; 1973 Mar; 10(1):23-8. PubMed ID: 4724174
    [No Abstract]   [Full Text] [Related]  

  • 10. On a liquid drop model of blood rheology.
    Kline KA
    Biorheology; 1972 Dec; 9(4):287-99. PubMed ID: 4665828
    [No Abstract]   [Full Text] [Related]  

  • 11. Model of platelet transport in flowing blood with drift and diffusion terms.
    Eckstein EC; Belgacem F
    Biophys J; 1991 Jul; 60(1):53-69. PubMed ID: 1883945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fluid mechanics of blood: equilibrium and sedimentation.
    Trowbridge EA
    Clin Phys Physiol Meas; 1982 Nov; 3(4):249-65. PubMed ID: 7160134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the constitutive equation of blood.
    Luo XY; Kuang ZB
    J Biomech; 1992 Aug; 25(8):929-34. PubMed ID: 1639837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the application of a constitutive equation for whole human blood.
    Rodkiewicz CM; Sinha P; Kennedy JS
    J Biomech Eng; 1990 May; 112(2):198-206. PubMed ID: 2345451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-layered Couette flow of polar fluid with non-zero particle spin boundary condition at the interfaces with applications to blood flow.
    Chaturani P; Biswas D
    Biorheology; 1983; 20(6):733-44. PubMed ID: 6661525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M; Niimi H
    Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of asymmetric flows of red blood cells in capillaries.
    Sugihara-Seki M; Skalak R
    Microvasc Res; 1988 Jul; 36(1):64-74. PubMed ID: 3185304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of blood flow.
    Skalak R; Keller SR; Secomb TW
    J Biomech Eng; 1981 May; 103(2):102-15. PubMed ID: 7024641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.