These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6591961)

  • 21. Thin film blood flow in rectangular channels with application to artificial kidney haemodynamics.
    Gaylor JD
    J Biomech; 1973 May; 6(3):241-51. PubMed ID: 4706934
    [No Abstract]   [Full Text] [Related]  

  • 22. An integro-partial differential equation for modeling biofluids flow in fractured biomaterials.
    Sadegh Zadeh K
    J Theor Biol; 2011 Mar; 273(1):72-9. PubMed ID: 21195718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation.
    Baaijens JP; van Steenhoven AA; Janssen JD
    Biorheology; 1993; 30(1):63-74. PubMed ID: 8374103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical analysis of the hysteresis rheogram of human blood.
    Fabisiak W; Huang CR
    Biorheology; 1980; 17(4):391-6. PubMed ID: 7260351
    [No Abstract]   [Full Text] [Related]  

  • 25. Filling of partially collapsed compliant tubes.
    Jan DL; Kamm RD; Shapiro AH
    J Biomech Eng; 1983 Feb; 105(1):12-9. PubMed ID: 6843096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the flow of a non-Newtonian liquid induced by intestine-like contractions.
    Phan-Thien N; Low HT
    J Biomech Eng; 1989 Feb; 111(1):1-8. PubMed ID: 2747227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shear-augmented dispersion in non-Newtonian fluids.
    Sharp MK
    Ann Biomed Eng; 1993; 21(4):407-15. PubMed ID: 8214825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of viscosity on tear drainage and ocular residence time.
    Zhu H; Chauhan A
    Optom Vis Sci; 2008 Aug; 85(8):715-25. PubMed ID: 18677227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A two-fluid model for blood flow through small diameter tubes.
    Chaturani P; Upadhya VS
    Biorheology; 1979; 16(1-2):109-118. PubMed ID: 476292
    [No Abstract]   [Full Text] [Related]  

  • 30. On micropolar fluid model for blood flow through narrow tubes.
    Chaturani P; Upadhya VS
    Biorheology; 1979; 16(6):419-28. PubMed ID: 534765
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of erythrocytic deformability upon turbulent blood flow.
    Sabbah HN; Stein PD
    Biorheology; 1976 Nov; 13(5):309-314. PubMed ID: 137022
    [No Abstract]   [Full Text] [Related]  

  • 32. Diffusion with attrition.
    Grover NB
    J Math Biol; 2006 Dec; 53(6):889-903. PubMed ID: 16937150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical 3D-stimulation of pulsatile wall shear stress in an arterial T-bifurcation model.
    Perktold K; Peter R
    J Biomed Eng; 1990 Jan; 12(1):2-12. PubMed ID: 2296164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of complex flows in Taylor-Couette counter-rotating cavities.
    Czarny O; Serre E; Bontoux P; Lueptow RM
    C R Acad Sci II; 2001 Oct; 329(10):727-33. PubMed ID: 12238517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady flow of couple stress fluid through tubes of slowly varying cross-sections--application to blood flows.
    Sagayamary RV; Devanathan R
    Biorheology; 1989; 26(4):753-69. PubMed ID: 2611369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the bifurcation behaviour of a model of flow through a collapsible tube.
    Armitstead JP; Bertram CD; Jensen OE
    Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
    Nicolle S; Vezin P; Palierne JF
    J Biomech; 2010 Mar; 43(5):927-32. PubMed ID: 19954778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mathematical model of the restoration of cellular composition of red blood].
    Egarmin VE
    Biofizika; 1982; 27(4):694-7. PubMed ID: 7126669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A structural mathematical model for the viscoelastic anisotropic behaviour of trabecular bone.
    Kafka V; Jírová J
    Biorheology; 1983; 20(6):795-805. PubMed ID: 6661530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations.
    Enden G; Popel AS
    J Biomech Eng; 1992 Aug; 114(3):398-405. PubMed ID: 1522734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.