These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 6592162)
1. New anthracycline antibiotics obtained by microbial glycosidation of beta-isorhodomycinone and alpha 2-rhodomycinone. Yoshimoto A; Johdo O; Takatsuki Y; Ishikura T; Sawa T; Takeuchi T; Umezawa H J Antibiot (Tokyo); 1984 Aug; 37(8):935-8. PubMed ID: 6592162 [No Abstract] [Full Text] [Related]
2. 4-O-(beta-D-Glucopyranosyl)-epsilon-rhodomycinone, a new microbial transformation product of rhodomycinone. Nakagawa M; Kawai H; Hayakawa Y; Seto H; Otake N J Antibiot (Tokyo); 1985 Nov; 38(11):1622-4. PubMed ID: 4077740 [No Abstract] [Full Text] [Related]
3. Isolation of new anthracyclines 10-O-rhodosaminyl beta-rhodomycinone and beta-isorhodomycinone from mild-acid treated culture of obelmycin-producing Streptomyces violaceus. Johdo O; Yoshioka T; Takeuchi T; Yoshimoto A J Antibiot (Tokyo); 1997 Jun; 50(6):522-5. PubMed ID: 9268010 [No Abstract] [Full Text] [Related]
4. Microbial conversion of anthracycline antibiotics. IV. Study on the glycosidation of epsilon-pyrromycinone by Streptomyces galilaeus OBB-111-848. Hoshino T; Fujiwara A J Antibiot (Tokyo); 1984 Nov; 37(11):1473-4. PubMed ID: 6511669 [No Abstract] [Full Text] [Related]
5. Microbial conversion of epsilon-pyrromycinone and epsilon-isorhodomycinone to 1-hydroxy-13-dihydrodaunomcyin and N-formyl-1-hydroxy-13-dihydrodaunomycin and their bioactivities. Yoshimoto A; Matsuzawa Y; Oki T; Naganawa H; Takeuchi T; Umezawa H J Antibiot (Tokyo); 1980 Oct; 33(10):1150-7. PubMed ID: 7451366 [TBL] [Abstract][Full Text] [Related]
6. Production of rhodomycins in Streptomyces griseoruber 4620. Podojil M; Blumauerová M; Prikrylová V; Vanĕk Z; Gauze GF; Maksimova TS Folia Microbiol (Praha); 1980; 25(6):464-6. PubMed ID: 7439844 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. I. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone. Oki T; Yoshimoto A; Matsuzawa Y; Takeuchi T; Umezawa H J Antibiot (Tokyo); 1980 Nov; 33(11):1331-40. PubMed ID: 6941952 [TBL] [Abstract][Full Text] [Related]
8. Chemical modification of anthracycline antibiotics IV. Synthesis of new anthracyclines with trisaccharide. Tanaka H; Yoshioka T; Shimauchi Y; Matsushita Y; Matsuzawa Y; Oki T; Ishikura T J Antibiot (Tokyo); 1982 Mar; 35(3):312-20. PubMed ID: 6951827 [TBL] [Abstract][Full Text] [Related]
9. Anthracycline metabolites from Streptomyces violaceus A262. I. Isolation of antibiotic-blocked mutants from Streptomyces violaceus A262. Johdo O; Ishikura T; Yoshimoto A; Takeuchi T J Antibiot (Tokyo); 1991 Oct; 44(10):1110-20. PubMed ID: 1955394 [TBL] [Abstract][Full Text] [Related]
10. Microbial conversion of anthracycline antibiotics. II. Characterization of the microbial conversion products of auramycinone by Streptomyces coeruleorubidus ATCC 31276. Hoshino T; Fujiwara A J Antibiot (Tokyo); 1983 Nov; 36(11):1463-7. PubMed ID: 6654755 [TBL] [Abstract][Full Text] [Related]
11. Microbial conversion of epsilon-pyrromycinone to 1-hydroxy-11-deoxycarminomycin II. Nakagawa M; Hayakawa Y; Imamura K; Seto H; Otake N J Antibiot (Tokyo); 1985 Jun; 38(6):821-2. PubMed ID: 4019326 [No Abstract] [Full Text] [Related]
12. Isolation of new anthracycline antibiotics, A447 C and D. Shimosaka A; Hayakawa Y; Nakagawa M; Furihata K; Seto H; Otake N J Antibiot (Tokyo); 1987 Jan; 40(1):116-21. PubMed ID: 3558112 [No Abstract] [Full Text] [Related]
13. The synthesis of epsilon-rhodomycinone- and carminomycin-11-methyl ethers. Essery JM; Doyle TW J Antibiot (Tokyo); 1979 Mar; 32(3):247-9. PubMed ID: 457585 [TBL] [Abstract][Full Text] [Related]
14. The structure of decilorubicin. Ishii K; Nishimura Y; Naganawa H; Kondo S; Umezawa H J Antibiot (Tokyo); 1984 Apr; 37(4):344-53. PubMed ID: 6704208 [TBL] [Abstract][Full Text] [Related]
15. Interaction of anthracycline antibiotics with biopolymers: comparative studies of DNA binding and antimicrobial activity of rhodomycin-type anthracycline antibiotics. Stutter E; Walter A; Fleck WF J Basic Microbiol; 1986; 26(10):607-20. PubMed ID: 3108489 [TBL] [Abstract][Full Text] [Related]
16. Microbial conversion of steffimycin and steffimycin B to 10-dihydrosteffimycin and 10-dihydrosteffimycin B. Wiley PF; Elrod DW; Slavicek JM; Marshall VP J Antibiot (Tokyo); 1980 Aug; 33(8):819-23. PubMed ID: 7429984 [TBL] [Abstract][Full Text] [Related]
17. Microbial conversion of anthracycline antibiotics. III. Glycosidation of natural and chemically synthesized anthracycline aglycones. Hoshino T; Setoguchi Y; Fujiwara A J Antibiot (Tokyo); 1984 Nov; 37(11):1469-72. PubMed ID: 6595254 [No Abstract] [Full Text] [Related]
18. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. II. Structure of new anthracycline antibiotics obtained by microbial glycosidation and biological activity. Matsuzawa Y; Yoshimoto A; Oki T; Naganawa H; Takeuchi T; Umezawa H J Antibiot (Tokyo); 1980 Nov; 33(11):1341-7. PubMed ID: 6941953 [TBL] [Abstract][Full Text] [Related]
19. Akrobomycin, a new anthracycline antibiotic. Imamura K; Odagawa A; Tanabe K; Hayakawa Y; Otake N J Antibiot (Tokyo); 1984 Jan; 37(1):83-4. PubMed ID: 6546563 [No Abstract] [Full Text] [Related]
20. [Effect of the molecular structure of anthracycline compounds on their intercalation into DNA]. Brikenshteĭn VKh; Baranov EP; Pitina LR; Bushelev SN Bioorg Khim; 1985 Jul; 11(7):934-43. PubMed ID: 3863621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]