These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 659270)
21. Cadmium and lead accumulation in three endogeic earthworm species. Latif R; Malek M; Mirmonsef H Bull Environ Contam Toxicol; 2013 Apr; 90(4):456-9. PubMed ID: 23283534 [TBL] [Abstract][Full Text] [Related]
22. Small Dendrobaena earthworms survive freezing better than large worms. Holmstrup M; Overgaard J; Bayley M Cryobiology; 2007 Jun; 54(3):298-300. PubMed ID: 17397817 [TBL] [Abstract][Full Text] [Related]
23. Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta. Marinussen MP; van der Zee SE; de Haan FA Ecotoxicol Environ Saf; 1997 Dec; 38(3):309-15. PubMed ID: 9469885 [TBL] [Abstract][Full Text] [Related]
24. Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. Sizmur T; Tilston EL; Charnock J; Palumbo-Roe B; Watts MJ; Hodson ME J Environ Monit; 2011 Feb; 13(2):266-73. PubMed ID: 21161093 [TBL] [Abstract][Full Text] [Related]
25. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
26. Effect of heavy metals on earthworm activities during vermicomposting of municipal solid waste. Kumar S; Sharma V; Bhoyar RV; Bhattacharyya JK; Chakrabarti T Water Environ Res; 2008 Feb; 80(2):154-61. PubMed ID: 18330226 [TBL] [Abstract][Full Text] [Related]
27. Earthworms, Rice Straw, and Plant Interactions Change the Organic Connections in Soil and Promote the Decontamination of Cadmium in Soil. Elyamine AM; Moussa MG; Ismael MA; Wei J; Zhao Y; Wu Y; Hu C Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30380659 [TBL] [Abstract][Full Text] [Related]
28. Arsenic biotransformation in earthworms from contaminated soils. Button M; Jenkin GR; Harrington CF; Watts MJ J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532 [TBL] [Abstract][Full Text] [Related]
29. Seasonal changes in lipid composition and glycogen storage associated with freeze-tolerance of the earthworm, Dendrobaena octaedra. Overgaard J; Tollarova M; Hedlund K; Petersen SO; Holmstrup M J Comp Physiol B; 2009 Jul; 179(5):569-77. PubMed ID: 19169691 [TBL] [Abstract][Full Text] [Related]
30. Determining factors for cryoprotectant accumulation in the freeze-tolerant earthworm, Dendrobaena octaedra. Overgaard J; Slotsbo S; Holmstrup M; Bayley M J Exp Zool A Ecol Genet Physiol; 2007 Oct; 307(10):578-89. PubMed ID: 17694532 [TBL] [Abstract][Full Text] [Related]
31. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Sizmur T; Palumbo-Roe B; Hodson ME Environ Pollut; 2011 Jul; 159(7):1852-60. PubMed ID: 21501909 [TBL] [Abstract][Full Text] [Related]
32. Anomalous bioaccumulation of lead in the earthworm Eisenoides lonnbergi (Michaelsen). Beyer WN; Codling EE; Rutzke MA Environ Toxicol Chem; 2018 Mar; 37(3):914-919. PubMed ID: 29111578 [TBL] [Abstract][Full Text] [Related]
33. Influence of metal-contamination on distribution in subcellular fractions of the earthworm (Metaphire californica) from Hunan Province, China. Wang K; Qiao Y; Zhang H; Yue S; Li H; Ji X; Liu L J Environ Sci (China); 2018 Nov; 73():127-137. PubMed ID: 30290861 [TBL] [Abstract][Full Text] [Related]
34. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils. Beaumelle L; Vile D; Lamy I; Vandenbulcke F; Gimbert F; Hedde M Sci Total Environ; 2016 Nov; 569-570():961-972. PubMed ID: 27378153 [TBL] [Abstract][Full Text] [Related]
35. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei. Šmídová K; Šerá J; Bielská L; Hofman J Environ Pollut; 2015 Dec; 207():168-75. PubMed ID: 26378968 [TBL] [Abstract][Full Text] [Related]
36. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan. Kamitani T; Kaneko N Ecotoxicol Environ Saf; 2007 Jan; 66(1):82-91. PubMed ID: 16324743 [TBL] [Abstract][Full Text] [Related]
37. A review of studies performed to assess metal uptake by earthworms. Nahmani J; Hodson ME; Black S Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606 [TBL] [Abstract][Full Text] [Related]
38. Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Lukkari T; Taavitsainen M; Väisänen A; Haimi J Ecotoxicol Environ Saf; 2004 Nov; 59(3):340-8. PubMed ID: 15388274 [TBL] [Abstract][Full Text] [Related]
39. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Suleiman H; Rorat A; Grobelak A; Grosser A; Milczarek M; Płytycz B; Kacprzak M; Vandenbulcke F Bioresour Technol; 2017 Oct; 241():103-112. PubMed ID: 28550771 [TBL] [Abstract][Full Text] [Related]
40. Main controlling factors and forecasting models of lead accumulation in earthworms based on low-level lead-contaminated soils. Tang R; Ding C; Ma Y; Wan M; Zhang T; Wang X Environ Sci Pollut Res Int; 2018 Aug; 25(23):23117-23124. PubMed ID: 29860691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]