These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6593714)

  • 81. Isolation and reconstitution of the high-affinity choline carrier.
    Knipper M; Boekhoff I; Breer H
    FEBS Lett; 1989 Mar; 245(1-2):235-7. PubMed ID: 2924923
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cloning of two isoforms of the rat brain Na(+)-Ca2+ exchanger gene and their functional expression in HeLa cells.
    Furman I; Cook O; Kasir J; Rahamimoff H
    FEBS Lett; 1993 Mar; 319(1-2):105-9. PubMed ID: 8454039
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Purification of the sodium- and chloride-coupled glycine transporter from central nervous system.
    López-Corcuera B; Vázquez J; Aragón C
    J Biol Chem; 1991 Dec; 266(36):24809-14. PubMed ID: 1761575
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The influence of asymmetrically distributed Ca2 on Na permeability of bovine brain phospholipid liposomes.
    Cools AA; van Dam K
    Hoppe Seylers Z Physiol Chem; 1981 Aug; 362(8):1051-8. PubMed ID: 6809555
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Molecular characterization, reconstitution, and "transport-specific fractionation" of the saxitoxin binding protein/Na+ gate of mammalian brain.
    Goldin SM; Rhoden V; Hess EJ
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6884-8. PubMed ID: 6256767
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Aging does not affect steady-state expression of the Na+/Ca2+ exchanger in rat brain.
    Colvin RA; Walker JP; Schummers J; Davis N
    Cell Mol Neurobiol; 1996 Feb; 16(1):11-9. PubMed ID: 8714556
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Reconstitution and partial purification of the sodium and chloride-coupled glycine transporter from rat spinal cord.
    Lopez-Corcuera B; Kanner BI; Aragón C
    Biochim Biophys Acta; 1989 Aug; 983(2):247-52. PubMed ID: 2569327
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Ion transport systems and Ca2+ regulation in aging neurons.
    Michaelis ML
    Ann N Y Acad Sci; 1994 Dec; 747():407-18. PubMed ID: 7847687
    [No Abstract]   [Full Text] [Related]  

  • 89. Na+-Ca2+ exchange activity in rabbit lymphocyte plasma membranes.
    Ueda T
    Biochim Biophys Acta; 1983 Oct; 734(2):342-6. PubMed ID: 6615836
    [TBL] [Abstract][Full Text] [Related]  

  • 90. 17beta-estradiol in vitro affects Na-dependent and depolarization-induced Ca2+ transport in rat brain synaptosomes.
    Nikezić G; Horvat A; Nedeljković N; Martinović JV
    Experientia; 1996 Mar; 52(3):217-20. PubMed ID: 8631388
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Extracellular calcium stimulates Na(+)-dependent putrescine uptake in B16 melanoma cells.
    Minchin RF; Martin RL
    Int J Biochem Cell Biol; 1997 Mar; 29(3):447-54. PubMed ID: 9202423
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sodium-calcium exchange in membrane vesicles from aortic myocytes: stimulation by endogenous proteolysis masks inactivation during vesicle preparation.
    Lyu RM; Reeves JP; Smith JB
    Biochim Biophys Acta; 1991 Sep; 1068(1):97-104. PubMed ID: 1892860
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The sodium-dependent iodide transport by phospholipid vesicles reconstituted with the thyroid plasma membrane.
    Saito K; Yamamoto K; Takai T; Yoshida S
    J Biochem; 1982 Dec; 92(6):2001-7. PubMed ID: 7161272
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Differential effects of ethanol on two synaptic membrane Ca2+ transport systems.
    Michaelis ML; Kitos TE; Tehan T
    Alcohol; 1985; 2(1):129-32. PubMed ID: 4015827
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Analysis of Na+/Ca2+ exchange activity in human brain: the effect of normal aging.
    Colvin RA; Wu A; Davis N; Murphy CA
    Neurobiol Aging; 1993; 14(4):373-81. PubMed ID: 8367019
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Reconstitution of Na+ transport from purified methylmalonyl-CoA decarboxylase and phospholipid vesicles.
    Hilpert W; Dimroth P
    Eur J Biochem; 1984 Feb; 138(3):579-83. PubMed ID: 6692834
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A possible role of the phosphorylation of synaptic membrane proteins in the control of calcium ion permeability.
    Weller M; Morgan IG
    Biochim Biophys Acta; 1977 Mar; 465(3):527-34. PubMed ID: 836838
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Isolation and reconstitution of the chloride transporter of clathrin-coated vesicles.
    Xie XS; Crider BP; Stone DK
    J Biol Chem; 1989 Nov; 264(32):18870-3. PubMed ID: 2572598
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Membrane potential generation and calcium transport in plasma membrane enriched fractions from fetal human brain.
    Scott IG; Akerman KE; Andersson SM
    Brain Res; 1984 Jul; 317(1):53-8. PubMed ID: 6087998
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Calcium binding to rat heart plasma membranes: isolation and purification of a lipoprotein component with a high calcium binding capacity.
    Feldman DA; Weinhold PA
    Biochemistry; 1977 Jul; 16(15):3470-5. PubMed ID: 889808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.