These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 659383)

  • 1. Amino acid sequence around the pyridoxal 5'-phosphate binding site in potato phosphorylase.
    Nakano K; Wakabayashi S; Hase T; Matsubara H; Fukui T
    J Biochem; 1978 Apr; 83(4):1085-94. PubMed ID: 659383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes.
    Fukui T; Shimomura S; Nakano K
    Mol Cell Biochem; 1982 Feb; 42(3):129-44. PubMed ID: 7062910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural similarities in the active-site region between potato and rabbit muscle phosphorylases: a lysyl residue located close to the pyridoxal 5'-phosphate.
    Tagaya M; Nakano K; Shimomura S; Fukui T
    J Biochem; 1982 Feb; 91(2):599-606. PubMed ID: 6802812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence of two functional sites in yeast glycogen phosphorylase.
    Lerch K; Fischer EH
    Biochemistry; 1975 May; 14(9):2009-14. PubMed ID: 1092346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of pyridoxal 5'-phosphate in plant phosphorylase.
    Shimomura S; Emman K; Fukui T
    J Biochem; 1980 Apr; 87(4):1043-52. PubMed ID: 7390978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence homology between potato and rabbit muscle phosphroylases. Isolation of cysteinyl peptides by covalent chromatography from the potato enzyme and their amino acid sequences.
    Nakano K; Fukui T; Matsubara H
    J Biochem; 1980 Mar; 87(3):919-27. PubMed ID: 7390969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-glucan phosphorylase from sweet potato: isolation and properties of the partially degraded enzyme.
    Ariki M; Fukui T
    Biochim Biophys Acta; 1975 Mar; 386(1):301-8. PubMed ID: 236025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence of the carboxyl-terminal 492 residues of rabbit muscle glycogen phosphorylase including the pyridoxal 5'-phosphate binding site.
    Titani K; Koide A; Ericsson LH; Kumar S; Hermann J; Wade RD; Walsh KA; Neurath H; Fischer EH
    Biochemistry; 1978 Dec; 17(26):5680-93. PubMed ID: 728426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate.
    Cole SC; Yon RJ
    Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Amino-3-ketobutyrate CoA ligase of Escherichia coli: stoichiometry of pyridoxal phosphate binding and location of the pyridoxyllysine peptide in the primary structure of the enzyme.
    Mukherjee JJ; Dekker EE
    Biochim Biophys Acta; 1990 Jan; 1037(1):24-9. PubMed ID: 2104756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW; Golding GB; Crerar MM
    J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A monomeric intermediate in the reconstitution of potato apophosphorylase with pyridoxal 5'-phosphate.
    Tagaya M; Shimomura S; Nakano K; Fukui T
    J Biochem; 1982 Feb; 91(2):589-97. PubMed ID: 7068577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How pyridoxal 5'-phosphate could function in glycogen phosphorylase catalysis.
    Helmreich EJ
    Biofactors; 1992 Jan; 3(3):159-72. PubMed ID: 1599610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the difference of the regulatory properties between potato and rabbit muscle phosphrylases. The NH2-terminal sequence of the potato enzyme.
    Nakano K; Fukui T; Matsubara H
    J Biol Chem; 1980 Oct; 255(19):9255-61. PubMed ID: 7410423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the phosphorylase reaction. Utilization of D-gluco-hept-1-enitol in the absence of primer.
    Klein HW; Im MJ; Palm D
    Eur J Biochem; 1986 May; 157(1):107-14. PubMed ID: 3086089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of catalytic and regulatory sites in phosphorylases.
    Palm D; Goerl R; Burger KJ
    Nature; 1985 Feb 7-13; 313(6002):500-2. PubMed ID: 3155826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase.
    Ferreira GC; Neame PJ; Dailey HA
    Protein Sci; 1993 Nov; 2(11):1959-65. PubMed ID: 8268805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The turnover of skeletal muscle glycogen phosphorylase studied using the cofactor, pyridoxal phosphate, as a specific label.
    Butler PE; Cookson EJ; Beynon RJ
    Biochim Biophys Acta; 1985 Dec; 847(3):316-23. PubMed ID: 4063401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphonate and alpha-fluorophosphonate analogue probes of the ionization state of pyridoxal 5'-phosphate (PLP) in glycogen phosphorylase.
    Stirtan WG; Withers SG
    Biochemistry; 1996 Nov; 35(47):15057-64. PubMed ID: 8942672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid sequence of cyanogen bromide fragments of potato phosphorylase.
    Nakano K; Tashiro Y; Kikumoto Y; Tagaya M; Fukui T
    J Biol Chem; 1986 Jun; 261(18):8224-9. PubMed ID: 3722152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.