These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 65940)
21. The effects of ionophores on the fluorescence of the cation 3,3'-dipropyloxadicarbocyanine in the presence of pigeon erythrocytes, erythrocyte 'ghosts' or liposomes. Kimmich GA; Philo RD; Eddy AA Biochem J; 1977 Oct; 168(1):81-90. PubMed ID: 74249 [TBL] [Abstract][Full Text] [Related]
22. Comparative studies on primycin and gramicidin induced cation transport changes in human erythrocytes. Blaskó K; Schagina LV; Malev VV; Sugár IP; Györgyi S Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):289-98. PubMed ID: 6085854 [TBL] [Abstract][Full Text] [Related]
23. Amino acid transport by resealed ghosts from pigeon erythrocytes. Wheeler KP Biochem J; 1982 Mar; 202(3):613-21. PubMed ID: 7092835 [TBL] [Abstract][Full Text] [Related]
24. Cystic fibrosis: normal volumes of red cells. Model experiments on the pathomechanism of the disease. Emrich HM; Heitz J; Katz S; Thom R Eur J Pediatr; 1976 Jul; 122(4):293-6. PubMed ID: 59666 [TBL] [Abstract][Full Text] [Related]
25. Transport of glycine by hemolyzed and restored pigeon red blood cells. Symmetry properties, trans effects of sodium ion and glycine, and their description by a single rate equation. Vidaver GA; Shepherd SL J Biol Chem; 1968 Dec; 243(23):6140-50. PubMed ID: 5723458 [No Abstract] [Full Text] [Related]
26. Enhanced eryptosis following gramicidin exposure. Malik A; Bissinger R; Liu G; Liu G; Lang F Toxins (Basel); 2015 Apr; 7(5):1396-410. PubMed ID: 25915718 [TBL] [Abstract][Full Text] [Related]
27. Calcium and ionophore A 23187 stimulate sugar transport in pigeon red cells [proceedings]. Carruthers A; Simons TJ J Physiol; 1978 Nov; 284():49P. PubMed ID: 366109 [No Abstract] [Full Text] [Related]
28. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Henderson PJ; McGivan JD; Chappell JB Biochem J; 1969 Feb; 111(4):521-35. PubMed ID: 5774477 [TBL] [Abstract][Full Text] [Related]
29. [Possibility of reversing the action of the membranotropic antibiotic, gramicidin S, on bacteria]. Bulgakov VG; Vostroknutova GN; Korolev PN; Ostrovskiĭ DN; Polin AN Antibiotiki; 1980 Feb; 25(2):121-6. PubMed ID: 6153518 [TBL] [Abstract][Full Text] [Related]
30. The effect of bumetanide on cation transport in human red blood cells. Lubowitz H J Pharmacol Exp Ther; 1977 Oct; 203(1):92-6. PubMed ID: 143526 [TBL] [Abstract][Full Text] [Related]
31. The formation of vesicles retaining sodium-dependent transport systems for amino acids from protein-depleted membranes of pigeon erythrocytes. Watts C; Wheeler KP Biochim Biophys Acta; 1980 Nov; 602(2):460-6. PubMed ID: 7426657 [TBL] [Abstract][Full Text] [Related]
32. Effect of UV-irradiation in vitro on adenin nucleotides metabolism, Na+ and K+ concentration, osmotic properties and submicroscopic structure of pigeon red blood cells. Kabat IA; Sysa J; Leyko W; Kwiatkowski B; Sysa A; Zakrezewska I; Hłyńczak A Zentralbl Bakteriol Orig B; 1975 May; 160(3):225-36. PubMed ID: 1154920 [TBL] [Abstract][Full Text] [Related]
33. Red cell amino acid transport. Evidence for the presence of system Gly in guinea pig reticulocytes. Fincham DA; Willis JS; Young JD Biochim Biophys Acta; 1984 Oct; 777(1):147-50. PubMed ID: 6207858 [TBL] [Abstract][Full Text] [Related]
34. Monensin stimulates sugar transport in avian erythrocytes. Bihler I; Charles P; Sawh PC Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360 [TBL] [Abstract][Full Text] [Related]
35. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin. Freedman JC; Novak TS J Gen Physiol; 1997 Feb; 109(2):201-16. PubMed ID: 9041449 [TBL] [Abstract][Full Text] [Related]
36. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Grunze M; Deuticke B Biochim Biophys Acta; 1974 Jul; 356(1):125-30. PubMed ID: 4842691 [No Abstract] [Full Text] [Related]
37. A method for demonstrating the heterogeneity of pigeon red cell membrane vesicles based on their glycine transport activity. Lee JW; Vidaver GA Biochim Biophys Acta; 1977 May; 466(3):441-50. PubMed ID: 870046 [TBL] [Abstract][Full Text] [Related]
38. The characterisation of two partially purified systems for Na+-dependent amino acid transport. Watts C; Wheeler KP Biochim Biophys Acta; 1980 Nov; 602(2):446-59. PubMed ID: 7426656 [TBL] [Abstract][Full Text] [Related]
39. Replacement of molecular species of phosphatidylcholine: influence on erythrocyte Na transport. Engelmann B; Op den Kamp JA; Roelofsen B Am J Physiol; 1990 Apr; 258(4 Pt 1):C682-91. PubMed ID: 2333953 [TBL] [Abstract][Full Text] [Related]
40. The effect of tienilic acid on Na+ and K+ transport in human red cells. Cusi D; Garay R Mol Pharmacol; 1981 May; 19(3):438-43. PubMed ID: 6267447 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]