These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 659410)

  • 1. Investigations of anion binding sites in transition state analogue complexes of creatine kinase by infrared spectroscopy.
    Reed GH; Barlow CH; Burns RA
    J Biol Chem; 1978 Jun; 253(12):4153-8. PubMed ID: 659410
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Photoaffinity labeling for enzymatic protein phosphate sites].
    Corda M; Carotti D; Pellegrini MG; Riva F
    Boll Soc Ital Biol Sper; 1978 Sep; 54(18):1729-34. PubMed ID: 753257
    [No Abstract]   [Full Text] [Related]  

  • 7. Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP.
    Vandest P; Labbe JP; Kassab R
    Eur J Biochem; 1980 Mar; 104(2):433-42. PubMed ID: 6244950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 9. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes.
    Cohn M; Diefenbach H; Taylor JS
    J Biol Chem; 1971 Oct; 246(19):6037-42. PubMed ID: 4330065
    [No Abstract]   [Full Text] [Related]  

  • 10. Magnetic resonance studies of three forms of creatine kinase. Comparison of the properties of native, CH-S-blocked, and H2NCOCH-blocked enzymes.
    Markham GD; Reed GH
    J Biol Chem; 1977 Feb; 252(4):1197-201. PubMed ID: 838713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases.
    Cohn M
    Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an associative mechanism in the phosphoryl transfer step catalyzed by rabbit muscle creatine kinase.
    Lowe G; Sproat BS
    J Biol Chem; 1980 May; 255(9):3944-51. PubMed ID: 7372661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the six ligands to manganese(II) in transition-state-analogue complexes of creatine kinase: oxygen-17 superhyperfine coupling from selectively labeled ligands.
    Reed GH; Leyh TS
    Biochemistry; 1980 Nov; 19(24):5472-80. PubMed ID: 6257280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron paramagnetic resonance and proton relaxation rate studies of spin-labeled creatine kinase and its complexes.
    Taylor JS; McLaughlin A; Cohn M
    J Biol Chem; 1971 Oct; 246(19):6029-36. PubMed ID: 4330064
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of the affinity of each component of a composite quaternary transition-state analogue complex of creatine kinase.
    Borders CL; Snider MJ; Wolfenden R; Edmiston PL
    Biochemistry; 2002 Jun; 41(22):6995-7000. PubMed ID: 12033932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion-binding and the state of copper in caeruloplasmin.
    Byers W; Curzon G; Garbett K; Speyer BE; Young SN; Williams RJ
    Biochim Biophys Acta; 1973 May; 310(1):38-50. PubMed ID: 4351064
    [No Abstract]   [Full Text] [Related]  

  • 18. Raman and infrared study of the crystals with molecular anions in the region of a solid-liquid phase transition.
    Gafurov MM; Aliev AR; Akhmedov IR
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Oct; 58(12):2683-92. PubMed ID: 12396051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus nuclear-magnetic-resonance studies of the transition-state analogue complex of creatine kinase.
    Milner-White EJ; Rycroft DS
    Biochem J; 1977 Dec; 167(3):827-9. PubMed ID: 603637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. Equilibrium constants, interconversion rates, and NMR parameters of enzyme-bound complexes.
    Nageswara Rao BD; Cohn M
    J Biol Chem; 1981 Feb; 256(4):1716-21. PubMed ID: 7462219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.