These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 659410)

  • 21. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies.
    Hagemann H; Marcillat O; Buchet R; Vial C
    Biochemistry; 2000 Aug; 39(31):9251-6. PubMed ID: 10924118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of manganese(II)-ligand superhyperfine couplings in complexes with proteins by electron spin-echo spectroscopy.
    LoBrutto R; Smithers GW; Reed GH; Orme-Johnson WH; Tan SL; Leigh JS
    Biochemistry; 1986 Sep; 25(19):5654-60. PubMed ID: 3022800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 25Mg NMR study of Mg2+-ATP, ADP-creatine kinase complexes.
    Shimizu T; Hatano M
    Biochem Biophys Res Commun; 1982 Jan; 104(2):720-6. PubMed ID: 7073711
    [No Abstract]   [Full Text] [Related]  

  • 24. Further evidence for nonsymmetric subunit association and intersubunit cooperativity in creatine kinase. Subunit-selective modifications by 2,4-dinitrophenylthiocyanate.
    Degani C; Degani Y
    J Biol Chem; 1980 Sep; 255(17):8221-8. PubMed ID: 7190972
    [No Abstract]   [Full Text] [Related]  

  • 25. On the specificity of creatine kinase. New glycocyamines and glycocyamine analogs related to creatine.
    Rowley GL; Greenleaf AL; Kenyon GL
    J Am Chem Soc; 1971 Oct; 93(21):5542-51. PubMed ID: 5165680
    [No Abstract]   [Full Text] [Related]  

  • 26. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands.
    Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH
    Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificity of creatine kinase for guanidino substrates. Kinetic and proton nuclear magnetic relaxation rate studies.
    McLaughlin AC; Cohn M; Kenyon GL
    J Biol Chem; 1972 Jul; 247(13):4382-8. PubMed ID: 5035696
    [No Abstract]   [Full Text] [Related]  

  • 28. Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared difference-spectroscopy study.
    Raimbault C; Buchet R; Vial C
    Eur J Biochem; 1996 Aug; 240(1):134-42. PubMed ID: 8797846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in MM-CK conformational mobility upon formation of the ADP-Mg(2+)-NO(3)(-)-creatine transition state analogue complex as detected by hydrogen/deuterium exchange.
    Mazon H; Marcillat O; Forest E; Vial C
    Biochemistry; 2003 Nov; 42(46):13596-604. PubMed ID: 14622006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The reaction of creatine kinase with dithiobisnitrobenzoic acid. Formation of derivatives of the enzyme.
    O'Sullivan WJ
    Int J Protein Res; 1971; 3(3):139-47. PubMed ID: 4257491
    [No Abstract]   [Full Text] [Related]  

  • 31. Stereochemical control over Mn(II)-thio versus Mn(II)-oxy coordination in adenosine 5'-O-(1-thiodiphosphate) complexes at the active site of creatine kinase.
    Smithers GW; Sammons RD; Goodhart PJ; LoBrutto R; Reed GH
    Biochemistry; 1989 Feb; 28(4):1597-604. PubMed ID: 2541758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterogeneity of rabbit muscle creatine kinase and limited proteolysis by proteinase K.
    Williamson J; Greene J; Chérif S; Milner-White EJ
    Biochem J; 1977 Dec; 167(3):731-7. PubMed ID: 603634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of transition-state analogue complexes on trypsin susceptibility of creatine kinase.
    Milner-White EJ; Young D
    Biochem Soc Trans; 1975; 3(4):554-6. PubMed ID: 1237428
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of limited proteolysis on rabbit muscle creatine kinase.
    Price NC; Murray S; Milner-White EJ
    Biochem J; 1981 Oct; 199(1):239-44. PubMed ID: 7039617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Creatine kinase: structure-activity relationships.
    Kenyon GL; Reed GH
    Adv Enzymol Relat Areas Mol Biol; 1983; 54():367-426. PubMed ID: 6342340
    [No Abstract]   [Full Text] [Related]  

  • 36. Reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified creatine kinase reactivated by dithiothreitol.
    Yang Y; Zhou HM
    Biochim Biophys Acta; 1998 Oct; 1388(1):190-8. PubMed ID: 9774729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 38. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding.
    Murali N; Jarori GK; Landy SB; Rao BD
    Biochemistry; 1993 Nov; 32(47):12941-8. PubMed ID: 8251518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circular dichroism of cobaltous complexes of creatine kinase.
    Gabriel JL; Davis RC
    Biochemistry; 1977 Nov; 16(24):5364-7. PubMed ID: 921939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Affinity modification of creatine kinase from rabbit skeletal muscles using gamma-(p-azidoanilide)-ATP].
    Akopian ZhI; Gazariants MG; Mkrtchian ES; Nersova LS; Lavrik OI
    Biokhimiia; 1981 Feb; 46(2):262-8. PubMed ID: 7018594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.