BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6594136)

  • 1. Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism.
    Kleanthous C; Shaw WV
    Biochem J; 1984 Oct; 223(1):211-20. PubMed ID: 6594136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of chloramphenicol acetyltransferase: the role of ternary complex interconversion in rate determination.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1995 Dec; 34(51):16852-9. PubMed ID: 8527461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10806-13. PubMed ID: 1932000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear steady-state kinetics of chloramphenicol acetyltransferase.
    Crabbe MJ; Goode D
    Biochem Cell Biol; 1991 Sep; 69(9):630-4. PubMed ID: 1793564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli.
    Hindson VJ; Shaw WV
    Biochemistry; 2003 Mar; 42(10):3113-9. PubMed ID: 12627979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding.
    Bennett AD; Shaw WV
    Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine.
    Hindson VJ
    Biochem J; 2003 Nov; 375(Pt 3):745-52. PubMed ID: 12940772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloramphenicol binding site of an fi- R-factor-specified variant of chloramphenicol acetyltransferase.
    Nitzan Y; Gozhansky S
    Arch Biochem Biophys; 1980 Apr; 201(1):115-20. PubMed ID: 6994649
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic and hydrodynamic studies of the NodL O-acetyl transferase of Rhizobium leguminosarum: a random-order ternary complex mechanism for acetyl transfer by a roughly spherical trimeric protein.
    Hindson VJ; Dunn SO; Rowe AJ; Shaw WV
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):203-13. PubMed ID: 11004540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloramphenicol acetylation in Streptomyces.
    Shaw WV; Hopwood DA
    J Gen Microbiol; 1976 May; 94(1):159-66. PubMed ID: 932687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetyl coenzyme A binding by chloramphenicol acetyltransferase. Hydrophobic determinants of recognition and catalysis.
    Day PJ; Shaw WV
    J Biol Chem; 1992 Mar; 267(8):5122-7. PubMed ID: 1544895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG
    Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of acetyl-CoA:L-glutamate N-acetyltransferase from human liver.
    Bachmann C; Krähenbühl S; Colombo JP
    Biochem J; 1982 Jul; 205(1):123-7. PubMed ID: 7126172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conformation of coenzyme A bound to chloramphenicol acetyltransferase determined by transferred NOE experiments.
    Barsukov IL; Lian LY; Ellis J; Sze KH; Shaw WV; Roberts GC
    J Mol Biol; 1996 Oct; 262(4):543-58. PubMed ID: 8893862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of chloramphenicol acetyltransferase at 1.75-A resolution.
    Leslie AG; Moody PC; Shaw WV
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4133-7. PubMed ID: 3288984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition kinetics of chloramphenicol acetyltransferase by selected detergents.
    Lu J; Jiang C
    Biochem Biophys Res Commun; 1993 Oct; 196(1):12-7. PubMed ID: 8216282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the enzymatic inactivation of chloramphenicol by highly purified chloramphenicol acetyltransferase.
    Thibault G; Guitard M; Daigneault R
    Biochim Biophys Acta; 1980 Aug; 614(2):339-42. PubMed ID: 6996733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetyl coenzyme A binding by chloramphenicol acetyltransferase: long-range electrostatic determinants of coenzyme A recognition.
    Day PJ; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1992 May; 31(17):4198-205. PubMed ID: 1567867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate and product inhibition initial rate kinetics of histone acetyltransferase.
    Wiktorowicz JE; Campos KL; Bonner J
    Biochemistry; 1981 Mar; 20(6):1464-7. PubMed ID: 7225345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synthesis of acetylcholine from acetyl-CoA, acetyl-dephospho-CoA and acetylpantetheine phosphate by choline acetyltransferase.
    Banns H; Hebb C; Mann SP
    J Neurochem; 1977 Sep; 29(3):433-7. PubMed ID: 19565
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.