These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 659451)

  • 1. Systems identification for material properties of the intervertebral joint.
    Lin HS; Liu YK; Ray G; Nikravesh P
    J Biomech; 1978; 11(1-2):1-14. PubMed ID: 659451
    [No Abstract]   [Full Text] [Related]  

  • 2. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite elements/Taguchi method based procedure for the identification of the geometrical parameters significantly affecting the biomechanical behavior of a lumbar disc.
    Cappetti N; Naddeo A; Naddeo F; Solitro GF
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1278-85. PubMed ID: 26693883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model-Method and Performance in Flexed Postures.
    Meng X; Bruno AG; Cheng B; Wang W; Bouxsein ML; Anderson DE
    J Biomech Eng; 2015 Oct; 137(10):101008. PubMed ID: 26299207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of the mechanical environment during regeneration of the intervertebral disc.
    Zeiter S; Bishop N; Ito K
    Eur Spine J; 2005 Nov; 14(9):874-9. PubMed ID: 15988609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A recent paper by Abouhossein et al. (2010) investigates the long-sharing mechanism of loads between the disc, ligaments and facet joints of the human lumbar spine.
    Aspden RM
    Comput Methods Biomech Biomed Engin; 2012; 15(9):1011-2; author reply 1013-4. PubMed ID: 21707247
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and function of the lumbar intervertebral disk in health, aging, and pathologic conditions.
    Lundon K; Bolton K
    J Orthop Sports Phys Ther; 2001 Jun; 31(6):291-303; discussion 304-6. PubMed ID: 11411624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of the lumbar spine.
    Pope MH
    Ann Med; 1989 Oct; 21(5):347-51. PubMed ID: 2532524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft tissue strain and facet face interaction in the lumbar intervertebral joint--Part I: Input data and computational technique.
    Tencer AF; Mayer TG
    J Biomech Eng; 1983 Aug; 105(3):201-9. PubMed ID: 6632822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft tissue strain and facet face interaction in the lumbar intervertebral joint--Part II: Calculated results and comparison with experimental data.
    Tencer AF; Mayer TG
    J Biomech Eng; 1983 Aug; 105(3):210-5. PubMed ID: 6632823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age.
    Amonoo-Kuofi HS
    J Anat; 1991 Apr; 175():159-68. PubMed ID: 2050561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between intervertebral joint morphology and mobility in the equine thoracolumbar spine.
    Townsend HG; Leach DH
    Equine Vet J; 1984 Sep; 16(5):461-5. PubMed ID: 6489309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Important macroscopic and microscopic differences in the bony and cartilaginous regions adjacent to the lumbar intervertebral disc between animal and man: a caveat to overinterpretation of animal experiments: comment to the article: Primary stability of anterior lumbar stabilization: interdependence of implant type and endplate retention or removal (C.H. Flamme et al.).
    Pfeiffer M; Pfeiffer D
    Eur Spine J; 2006 Jun; 15(6):819-20. PubMed ID: 16758108
    [No Abstract]   [Full Text] [Related]  

  • 15. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging.
    Aiyangar AK; Zheng L; Tashman S; Anderst WJ; Zhang X
    J Biomech Eng; 2014 Jan; 136(1):011004. PubMed ID: 24149991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behavior of a simple model of an intervertebral disk under compressive loading.
    Spilker RL
    J Biomech; 1980; 13(10):895-901. PubMed ID: 7462264
    [No Abstract]   [Full Text] [Related]  

  • 17. Dynamic compressive properties of human lumbar intervertebral joints: a comparison between fresh and thawed specimens.
    Smeathers JE; Joanes DN
    J Biomech; 1988; 21(5):425-33. PubMed ID: 3417694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of intervertebral disc space narrowing on the contact force between the nerve root and a simulated disc protrusion.
    Spencer DL; Miller JA; Bertolini JE
    Spine (Phila Pa 1976); 1984; 9(4):422-6. PubMed ID: 6474256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy.
    Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of secondary variables in the measurement of the mechanical properties of the lumbar intervertebral joint.
    Tencer AF; Ahmed AM
    J Biomech Eng; 1981 Aug; 103(3):129-37. PubMed ID: 7278189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.