BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 6594682)

  • 1. On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin.
    Hanamoto JH; Dupuis P; El-Sayed MA
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7083-7. PubMed ID: 6594682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues.
    Sheves M; Albeck A; Friedman N; Ottolenghi M
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3262-6. PubMed ID: 3458179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping.
    Kalisky O; Ottolenghi M; Honig B; Korenstein R
    Biochemistry; 1981 Feb; 20(3):649-55. PubMed ID: 7213600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin.
    Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M
    J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange kinetics of the Schiff base proton in bacteriorhodopsin.
    Ehrenberg B; Lewis A; Porta TK; Nagle JF; Stoeckenius W
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6571-3. PubMed ID: 6256745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan fluorescence quenching as a monitor for the protein conformation changes occurring during the photocycle of bacteriorhodopsin under different perturbations.
    Jang DJ; el-Sayed MA
    Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5815-9. PubMed ID: 2762298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface charge changes in purple membranes and the photoreaction cycle of bacteriorhodopsin.
    Carmeli C; Quintanilha AT; Packer L
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4707-11. PubMed ID: 6254038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman evidence for an all-trans to 13-cis isomerization in the proton-pumping cycle of bacteriorhodopsin.
    Braiman M; Mathies R
    Biochemistry; 1980 Nov; 19(23):5421-8. PubMed ID: 7448177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-base equilibrium of the Schiff base in bacteriorhodopsin.
    Druckmann S; Ottolenghi M; Pande A; Pande J; Callender RH
    Biochemistry; 1982 Sep; 21(20):4953-9. PubMed ID: 7138840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the first phase of the reprotonation switch of bacteriorhodopsin from time-resolved photovoltage and flash photolysis experiments on the photoreversal of the M-intermediate.
    Dickopf S; Heyn MP
    Biophys J; 1997 Dec; 73(6):3171-81. PubMed ID: 9414229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin.
    Kolodner P; Lukashev EP; Ching YC; Rousseau DL
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11618-21. PubMed ID: 8876185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the transiently lowered pKa of the retinal Schiff base during the photocycle of bacteriorhodopsin.
    Brown LS; Lanyi JK
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1731-4. PubMed ID: 8643698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The radiolytic reduction of the Schiff base in bacteriorhodopsin.
    Druckmann S; Renthal R; Ottolenghi M; Stoeckenius W
    Photochem Photobiol; 1984 Nov; 40(5):647-51. PubMed ID: 6514812
    [No Abstract]   [Full Text] [Related]  

  • 15. The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals.
    Sanii LS; Schill AW; Moran CE; El-Sayed MA
    Biophys J; 2005 Jul; 89(1):444-51. PubMed ID: 15821169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.
    Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J
    Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman spectroscopy of the retinylidene chromophore in bacteriorhodopsin (bR570), bR560, M421, and other intermediates: structural conclusions based on kinetics, analogues, models, and isotopically labeled membranes.
    Marcus MA; Lewis A
    Biochemistry; 1978 Oct; 17(22):4722-35. PubMed ID: 728381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman studies of the purple membrane.
    Aton B; Doukas AG; Callender RH; Becher B; Ebrey TG
    Biochemistry; 1977 Jun; 16(13):2995-9. PubMed ID: 880292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy.
    Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A
    Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.