These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6595655)

  • 1. Kinetic circular dichroism shows that the S-peptide alpha-helix of ribonuclease S unfolds fast and refolds slowly.
    Labhardt AM
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7674-8. PubMed ID: 6595655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3061-70. PubMed ID: 2110824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease A.
    Houry WA; Rothwarf DM; Scheraga HA
    Biochemistry; 1996 Aug; 35(31):10125-33. PubMed ID: 8756476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental studies of folding kinetics and structural dynamics of small proteins.
    Kuwajima K; Schmid FX
    Adv Biophys; 1984; 18():43-74. PubMed ID: 6399821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide proton exchange used to monitor the formation of a stable alpha-helix by residues 3 to 13 during folding of ribonuclease S.
    Brems DN; Baldwin RL
    J Mol Biol; 1984 Dec; 180(4):1141-56. PubMed ID: 6098689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the refolding combination reaction between S-peptide and S-protein.
    Labhardt AM; Ridge JA; Lindquist RN; Baldwin RL
    Biochemistry; 1983 Jan; 22(2):321-7. PubMed ID: 6402007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediates in the refolding of ribonuclease at subzero temperatures. 3. Multiple folding pathways.
    Biringer RG; Fink AL
    Biochemistry; 1988 Jan; 27(1):315-25. PubMed ID: 3349035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonuclease A: a study of tyrosine-to-phenylalanine mutants.
    Juminaga D; Wedemeyer WJ; Garduño-Júarez R; McDonald MA; Scheraga HA
    Biochemistry; 1997 Aug; 36(33):10131-45. PubMed ID: 9254610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A specific transition state for S-peptide combining with folded S-protein and then refolding.
    Goldberg JM; Baldwin RL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2019-24. PubMed ID: 10051587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy.
    Kuwajima K; Yamaya H; Sugai S
    J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid.
    Chen HM; Tsong TY
    Biophys J; 1994 Jan; 66(1):40-5. PubMed ID: 8130346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanidine-unfolded state of ribonuclease A contains both fast- and slow-refolding species.
    Garel JR; Nall BT; Baldwin RL
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1853-7. PubMed ID: 1064858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy.
    Mizuguchi M; Arai M; Ke Y; Nitta K; Kuwajima K
    J Mol Biol; 1998; 283(1):265-77. PubMed ID: 9761689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of folding and unfolding of alpha alpha-tropomyosin and of nonpolymerizable alpha alpha-tropomyosin.
    Mo J; Holtzer ME; Holtzer A
    Biopolymers; 1991 Oct; 31(12):1417-27. PubMed ID: 1816878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of two proline-containing turns in the folding of porcine ribonuclease.
    Lang K; Schmid FX
    J Mol Biol; 1990 Mar; 212(1):185-96. PubMed ID: 2319596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.