BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 6595658)

  • 21. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress.
    Ingrosso D; D'angelo S; di Carlo E; Perna AF; Zappia V; Galletti P
    Eur J Biochem; 2000 Jul; 267(14):4397-405. PubMed ID: 10880963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methyl acceptors for protein methylase II from human-erythrocyte membrane.
    Galletti P; Ki Paik W; Kim S
    Eur J Biochem; 1979 Jun; 97(1):221-7. PubMed ID: 477670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective methyl esterification of erythrocyte membrane proteins by protein methylase II.
    Galletti P; Paik WK; Kim S
    Biochemistry; 1978 Oct; 17(20):4272-6. PubMed ID: 708712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automethylation of protein (D-aspartyl/L-isoaspartyl) carboxyl methyltransferase, a response to enzyme aging.
    Lindquist JA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):23-30. PubMed ID: 8011068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism of a synthetic L-isoaspartyl-containing hexapeptide in erythrocyte extracts. Enzymatic methyl esterification is followed by nonenzymatic succinimide formation.
    Murray ED; Clarke S
    J Biol Chem; 1986 Jan; 261(1):306-12. PubMed ID: 3941079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic methyl esterification of synthetic tripeptides: structural requirements of the peptide substrate. Detection of the reaction products by fast-atom-bombardment mass spectrometry.
    Galletti P; Ingrosso D; Manna C; Sica F; Capasso S; Pucci P; Marino G
    Eur J Biochem; 1988 Oct; 177(1):233-9. PubMed ID: 3181156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation.
    Ota IM; Clarke S
    J Biol Chem; 1989 Jan; 264(1):54-60. PubMed ID: 2642479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme.
    Mudgett MB; Clarke S
    Biochemistry; 1993 Oct; 32(41):11100-11. PubMed ID: 8198620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues.
    Ota IM; Clarke S
    J Biol Chem; 1989 Aug; 264(22):12879-84. PubMed ID: 2753892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.
    Oda A; Noji I; Fukuyoshi S; Takahashi O
    J Pharm Biomed Anal; 2015 Dec; 116():116-22. PubMed ID: 25758062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of altered aspartyl residues in erythrocyte membrane proteins from patients with sporadic amyotrophic lateral sclerosis.
    D'Angelo S; Trojsi F; Salvatore A; Daniele L; Raimo M; Galletti P; MonsurrĂ² MR
    Neurochem Int; 2013 Nov; 63(6):626-34. PubMed ID: 24044898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein L-isoaspartyl methyltransferase from the nematode Caenorhabditis elegans: genomic structure and substrate specificity.
    Kagan RM; Clarke S
    Biochemistry; 1995 Aug; 34(34):10794-806. PubMed ID: 7662659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aspartimide formation in the joining peptide sequence of porcine and mouse pro-opiomelanocortin.
    Toney K; Bateman A; Gagnon C; Bennett HP
    J Biol Chem; 1993 Jan; 268(2):1024-31. PubMed ID: 8380403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a C-terminal protein carboxyl methyltransferase in rat liver membranes utilizing a synthetic farnesyl cysteine-containing peptide substrate.
    Stephenson RC; Clarke S
    J Biol Chem; 1990 Sep; 265(27):16248-54. PubMed ID: 2398053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of isoaspartyl peptides and proteins by protein carboxyl methyltransferase from bovine brain.
    Aswad DW; Johnson BA; Langmack EL; Shirokawa JM
    Adv Exp Med Biol; 1988; 231():247-59. PubMed ID: 3414433
    [No Abstract]   [Full Text] [Related]  

  • 36. Protein carboxyl methyltransferases: two distinct classes of enzymes.
    Clarke S
    Annu Rev Biochem; 1985; 54():479-506. PubMed ID: 3896126
    [No Abstract]   [Full Text] [Related]  

  • 37. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction.
    Xie H; Clarke S
    J Biol Chem; 1993 Jun; 268(18):13364-71. PubMed ID: 8514774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein carboxyl methyltransferase selectively modifies an atypical form of calmodulin. Evidence for methylation at deamidated asparagine residues.
    Johnson BA; Freitag NE; Aswad DW
    J Biol Chem; 1985 Sep; 260(20):10913-6. PubMed ID: 4030774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic properties of bovine brain protein L-isoaspartyl methyltransferase determined using a synthetic isoaspartyl peptide substrate.
    Johnson BA; Aswad DW
    Neurochem Res; 1993 Jan; 18(1):87-94. PubMed ID: 8464537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation and subcellular distribution of a protein methyltransferase and its damaged aspartyl substrate sites in developing Xenopus oocytes.
    O'Connor CM
    J Biol Chem; 1987 Jul; 262(21):10398-403. PubMed ID: 3611066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.