These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 659873)

  • 21. Deviated lysis (d.l.): III. Kinetics of interaction of d.l. activity with chicken erythrocytes: evidence for E formation.
    Borsos T; Rother U
    Z Immunitatsforsch Immunobiol; 1977 Apr; 153(1):36-47. PubMed ID: 405812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between channel size and the number of C9 molecules in the C5b-9 complex.
    Ramm LE; Whitlow MB; Mayer MM
    J Immunol; 1985 Apr; 134(4):2594-9. PubMed ID: 2579147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by C5b-9 does not involve increased C7 binding or cell-bound C3b.
    Rosenfeld SI; Jenkins DE; Leddy JP
    J Immunol; 1985 Jan; 134(1):506-11. PubMed ID: 3964820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between polymerization of complement component C9 and membrane channel formation.
    DiScipio RG
    J Immunol; 1991 Dec; 147(12):4239-47. PubMed ID: 1721643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the terminal stages of immune hemolysis. VI. Osmotic blockers of differing Stokes' radii detect complement-induced transmembrane channels of differing size.
    Boyle MD; Gee AP; Borsos T
    J Immunol; 1979 Jul; 123(1):77-82. PubMed ID: 109541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The functional size of the primary complement lesion in resealed erythrocyte membrane ghosts.
    Giavedoni EB; Chow YM; Dalmasso AP
    J Immunol; 1979 Jan; 122(1):240-5. PubMed ID: 570203
    [No Abstract]   [Full Text] [Related]  

  • 27. Activation of the fifth and sixth component of the complement system: similarities between C5b6 and C(56)a with respect to lytic enhancement by cell-bound C3b or A2C, and species preferences of target cell.
    Hänsch GM; Hammer CH; Mayer MM; Shin ML
    J Immunol; 1981 Sep; 127(3):999-1002. PubMed ID: 6911149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of complement functional efficiency by histidine-rich glycoprotein.
    Chang NS; Leu RW; Rummage JA; Anderson JK; Mole JE
    Blood; 1992 Jun; 79(11):2973-80. PubMed ID: 1375119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inherited deficiency of the ninth component of complement in man.
    Lint TF; Zeitz HJ; Gewurz H
    J Immunol; 1980 Nov; 125(5):2252-7. PubMed ID: 7430628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complement lysis of human erythrocytes. II. A unique interaction of human C8 and C9 with paroxysmal nocturnal hemoglobinuria erythrocytes.
    Packman CH; Rosenfeld SI; Jenkins DE; Leddy JP
    J Immunol; 1980 Jun; 124(6):2818-23. PubMed ID: 7189536
    [No Abstract]   [Full Text] [Related]  

  • 31. Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9.
    Shin ML; Hänsch G; Hu VW; Nicholson-Weller A
    J Immunol; 1986 Mar; 136(5):1777-82. PubMed ID: 2419414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization.
    Tschopp J; Podack ER; Müller-Eberhard HJ
    J Immunol; 1985 Jan; 134(1):495-9. PubMed ID: 3964819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane vesiculation protects erythrocytes from destruction by complement.
    Iida K; Whitlow MB; Nussenzweig V
    J Immunol; 1991 Oct; 147(8):2638-42. PubMed ID: 1918984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping of the complement C9 binding domain in paramyosin of the blood fluke Schistosoma mansoni.
    Deng J; Gold D; LoVerde PT; Fishelson Z
    Int J Parasitol; 2007 Jan; 37(1):67-75. PubMed ID: 17123534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lytic activity of C5-9 complexes for erythrocytes from the species other than sheep: C9 rather than C8-dependent variation in lytic activity.
    Yamamoto KI
    J Immunol; 1977 Oct; 119(4):1482-5. PubMed ID: 894048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular analysis of the reaction of C9 with EAC1-8: reaction of C9 with EAC1-8.
    Kitamura H; Inai S
    J Immunol; 1974 Dec; 113(6):1992-2003. PubMed ID: 4214868
    [No Abstract]   [Full Text] [Related]  

  • 37. Deviated lysis: transfer of complement lytic activity to unsensitized cells. IV. Parital isolation of the activity.
    Hänsch G; Rother U; Rother K
    Z Immunitatsforsch Immunobiol; 1977 Apr; 153(1):48-59. PubMed ID: 868206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for the influence of the initial complement components on the assembly and activity of the membrane attack complex.
    Boyle MD; Ohanian SH
    J Immunol; 1980 Jun; 124(6):2824-7. PubMed ID: 7373051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies of guinea pig complement component C9: reaction kinetics and evidence that lysis of EAC1-8 results from a single membrane lesion caused by one molecule of C9.
    Rommel FA; Mayer MM
    J Immunol; 1973 Mar; 110(3):637-47. PubMed ID: 4688916
    [No Abstract]   [Full Text] [Related]  

  • 40. A new theoretical model of immune hemolysis: application to the reaction between EAC1-8 and C9.
    Kitamura H; Itakura N; Inai S
    Immunochemistry; 1976 Sep; 13(9):771-7. PubMed ID: 992700
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.