These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 6599494)
1. Sodium and potassium concentrations of renal cortical cells two animal models of primary arterial hypertension. Beck F; Bianchi G; Dörge A; Rick R; Schramm M; Thurau K J Hypertens Suppl; 1983 Dec; 1(2):38-9. PubMed ID: 6599494 [TBL] [Abstract][Full Text] [Related]
2. A renal abnormality in the Milan hypertensive strain of rats and in humans predisposed to essential hypertension. Bianchi G; Ferrari P; Salvati P; Salardi S; Parenti P; Cusi D; Guidi E J Hypertens Suppl; 1986 Oct; 4(3):S33-6. PubMed ID: 3537235 [TBL] [Abstract][Full Text] [Related]
3. Does the kidney play a role in the aetiology of primary hypertension? Evidence from renal transplantation studies in rats and humans. Rettig R J Hum Hypertens; 1993 Apr; 7(2):177-80. PubMed ID: 8510091 [TBL] [Abstract][Full Text] [Related]
4. Altered renal sodium handling in spontaneously hypertensive rats (SHR) after hypertonic saline intracerebroventricular injection: role of renal nerves. Guadagnini D; Gontijo JA Life Sci; 2006 Sep; 79(17):1666-73. PubMed ID: 16806279 [TBL] [Abstract][Full Text] [Related]
6. Early altered renal sodium handling determined by lithium clearance in spontaneously hypertensive rats (SHR): role of renal nerves. Boer PA; Morelli JM; Figueiredo JF; Gontijo JA Life Sci; 2005 Mar; 76(16):1805-15. PubMed ID: 15698858 [TBL] [Abstract][Full Text] [Related]
7. Coexisting independent sodium-sensitive and sodium-insensitive mechanisms of genetic hypertension in spontaneously hypertensive rats (SHR). Wells IC; Blotcky AJ Can J Physiol Pharmacol; 2001 Sep; 79(9):779-84. PubMed ID: 11599778 [TBL] [Abstract][Full Text] [Related]
8. Genetic aspects of ion transport systems in hypertension. Bianchi G; Ferrari P; Cusi D; Tripodi G; Barber B J Hypertens Suppl; 1990 Dec; 8(7):S213-8. PubMed ID: 1710265 [TBL] [Abstract][Full Text] [Related]
9. Enhanced sympathetic control of renal function in rats congenic for the hypertension-related region on chromosome 1. Wang T; Kobayashi Y; Nabika T; Takabatake T Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1055-60. PubMed ID: 16445571 [TBL] [Abstract][Full Text] [Related]
10. Cardiovascular remodeling and metabolic abnormalities in SHRSP.Z-Lepr(fa)/IzmDmcr rats as a new model of metabolic syndrome. Ueno T; Takagi H; Fukuda N; Takahashi A; Yao EH; Mitsumata M; Hiraoka-Yamamoto J; Ikeda K; Matsumoto K; Yamori Y Hypertens Res; 2008 May; 31(5):1021-31. PubMed ID: 18712058 [TBL] [Abstract][Full Text] [Related]
11. Calcium transport and vitamin D metabolism in the spontaneously hypertensive rat and normotensive Wistar-Kyoto control rat. Schedl HP Prog Clin Biol Res; 1984; 168():363-7. PubMed ID: 6514743 [No Abstract] [Full Text] [Related]
12. Na+/H+ exchanger activity and phosphorylation in temperature-sensitive immortalized proximal tubule cell lines derived from the spontaneously hypertensive rat. Ng LL; Jennings S; Davies JE; Quinn PA Clin Sci (Lond); 2000 Apr; 98(4):409-18. PubMed ID: 10731474 [TBL] [Abstract][Full Text] [Related]
13. Na+/H+-exchanger 3 activity and its gene in the spontaneously hypertensive rat kidney. Hayashi M; Yoshida T; Monkawa T; Yamaji Y; Sato S; Saruta T J Hypertens; 1997 Jan; 15(1):43-8. PubMed ID: 9050969 [TBL] [Abstract][Full Text] [Related]
14. Defect of the potassium transport process in the kidney of spontaneously hypertensive rats. Kau ST; Pritchard WJ; Leszczynska K Pharmacology; 1992; 45(1):34-40. PubMed ID: 1508966 [TBL] [Abstract][Full Text] [Related]
15. Renal function of isolated perfused kidneys from hypertensive (MHS) and normotensive (MNS) rats of the Milan strain at different ages. Salvati P; Pinciroli GP; Bianchi G J Hypertens Suppl; 1984 Dec; 2(3):S351-3. PubMed ID: 6599680 [TBL] [Abstract][Full Text] [Related]
16. [Sodium transport and renal hemodynamics in arterial hypertension of genetic origin: primary or secondary changes?]. Barlassina C; Cusi D; Pati P; Ferrari P; Salardi S; Bianchi G Nephrologie; 1988; 9(1):9-13. PubMed ID: 3292964 [TBL] [Abstract][Full Text] [Related]
17. 86Rb and 22Na transport in primary cultured renal cells from spontaneously hypertensive rats. Orlov SN; Pokudin NI; Postnov YV J Hypertens Suppl; 1991 Dec; 9(6):S290-1. PubMed ID: 1818973 [No Abstract] [Full Text] [Related]
18. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat. Sonalker PA; Tofovic SP; Jackson EK Clin Exp Pharmacol Physiol; 2007 Dec; 34(12):1307-12. PubMed ID: 17973873 [TBL] [Abstract][Full Text] [Related]
19. The Milan hypertensive rat as a model for studying cation transport abnormality in genetic hypertension. Ferrari P; Barber BR; Torielli L; Ferrandi M; Salardi S; Bianchi G Hypertension; 1987 Nov; 10(5 Pt 2):I32-6. PubMed ID: 3316005 [TBL] [Abstract][Full Text] [Related]
20. Renal AT1 receptor: computerized quantification in spontaneously hypertensive rats and DOCA-salt rats. Asano N; Ogura T; Mimura Y; Otsuka F; Kishida M; Hashimoto M; Yamauchi T; Makino H Res Commun Mol Pathol Pharmacol; 1998 May; 100(2):171-80. PubMed ID: 9667071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]