These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6600644)

  • 1. Surface and intramedullary potentials evoked by stimulation of the glossopharyngeal nerve in frogs.
    Hanamori T; Ishiko N
    Brain Res; 1983 Jan; 260(1):51-60. PubMed ID: 6600644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal pathways for the lingual reflex in the Japanese toad.
    Matsushima T; Satou M; Ueda K
    J Comp Physiol A; 1988 Dec; 164(2):173-93. PubMed ID: 3244127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic organization of eighth nerve afferents to cat dorsal cochlear nucleus.
    Manis PB; Brownell WE
    J Neurophysiol; 1983 Nov; 50(5):1156-81. PubMed ID: 6644365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of antidromic stimulation of the glossopharyngeal nerve on afferent discharges occurring with and without sensory stimulation of the frog tongue.
    Murayama N; Ishiko N
    Neurosci Lett; 1985 Sep; 60(1):95-9. PubMed ID: 3877259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects exerted by stimulation of glossopharyngeal taste buds on the nucleus intercalatus and adjoining medullary structures.
    Bava A; Innocenti GM; Raffaele R
    Arch Fisiol; 1972 Oct; 69(2):131-59. PubMed ID: 4669246
    [No Abstract]   [Full Text] [Related]  

  • 6. Efferent fibers innervate gustatory and mechanosensitive afferent fibers in frog fungiform papillae.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2012 May; 37(4):315-24. PubMed ID: 21994412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological characteristics of the solitario-parabrachial relay neurons with tongue afferent inputs in rats.
    Ogawa H; Kaisaku J
    Exp Brain Res; 1982; 48(3):362-8. PubMed ID: 6295794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study.
    Stuesse SL; Cruce WL; Powell KS
    J Comp Neurol; 1984 Jan; 222(3):358-65. PubMed ID: 6607937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective depressant action of antidromic impulses on gustatory nerve signals.
    Murayama N; Ishiko N
    J Gen Physiol; 1986 Aug; 88(2):219-36. PubMed ID: 3489068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of laryngeal sensory-evoked potentials (LSEPs) in the cat.
    Fukuyama T; Umezaki T; Shin T
    Brain Res Bull; 1993; 31(3-4):381-92. PubMed ID: 8490736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins and conducting tracts of evoked spinal cord potentials in cats.
    Takano H; Kitagawa H; Yamamoto N; Takakuwa K; Tsuji H
    J Spinal Disord; 1991 Dec; 4(4):455-61. PubMed ID: 1810569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro.
    Manis PB
    J Neurophysiol; 1989 Jan; 61(1):149-61. PubMed ID: 2918341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of slow hyperpolarizing potentials in frog taste cells induced by glossopharyngeal nerve stimulation.
    Sato T; Okada Y; Toda K
    Chem Senses; 2004 Oct; 29(8):651-7. PubMed ID: 15466810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction among different sensory units within a single fungiform papilla in the frog tongue.
    Murayama N
    J Gen Physiol; 1988 May; 91(5):685-701. PubMed ID: 3262148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of slow potentials on the tongue surface induced by frog glossopharyngeal efferent fiber stimulation.
    Sato T; Toda K; Miyamoto T; Okada Y; Fujiyama R
    Chem Senses; 2000 Oct; 25(5):583-9. PubMed ID: 11015330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evoked potentials in the frog medulla oblongata upon electric stimulation of the glossopharyngeal nerve].
    Vasilevskaia NE; Zharova NE
    Neirofiziologiia; 1974 May; 6(3):288-94. PubMed ID: 4545861
    [No Abstract]   [Full Text] [Related]  

  • 17. Responses of cerebellar cortex to electrical stimulation of the glossopharyngeal nerve in the frog.
    Hanamori T; Nakashima M; Ishiko N
    Neurosci Lett; 1986 Aug; 68(3):345-50. PubMed ID: 3489206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-synaptic transformation of gustatory receptor potential by stimulation of the parasympathetic fiber of the frog glossopharyngeal nerve.
    Sato T; Miyamoto T; Okada Y; Fujiyama R
    Chem Senses; 2001 Jan; 26(1):79-84. PubMed ID: 11124218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflex response of the hypoglossal nerve induced by chemical stimulation of the tongue and electrical stimulation of the glossopharyngeal nerve in the frog.
    Kumai T
    Jpn J Physiol; 1981; 31(5):625-37. PubMed ID: 7328914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic activity of parasympathetic efferent nerve fibers hyperpolarizes the resting membrane potential of frog taste cells.
    Sato T; Nishishita K; Kato Y; Okada Y; Toda K
    Chem Senses; 2006 May; 31(4):307-13. PubMed ID: 16469796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.